Shape Regularization and Acceleration of Topology Optimization via Point Group Symmetries

Miloslav Čapek, Vojtěch Neuman, Jonáš Tuček, and Lukáš Jelínek

Department of Electromagnetic Field, Czech Technical University in Prague, Czech Republic

miloslav.capek@fel.cvut.cz

April 1, 2022
The 16th European Conference on Antennas and Propagation
Madrid, Spain
Symmetric magnetic trap in the form of baseball seam (use motif in one of the octants and replicate with $\sigma_z C_{4z}$ recursively three times).

The picture of magnetic trap kindly provided by Jakub Liska from CTU in Prague.
Symmetry – Common Characteristic of EM Designs
(Some pictures taken from internet)
Symmetricity is an important characteristic of many antenna and microwave devices...
Utilized as PEC/PMC planes, odd/even modes...

Simplify an EM problem and reduce computational burden.

in-phase (even) out-of-phase (odd)
Symmetries

- Utilized as PEC/PMC planes, odd/even modes...
- Simplify an EM problem and reduce computational burden.

In this work, method of moments paradigm is considered

1/ To enforce symmetries.

2/ To prefer symmetries.
Application Domain

\[J(r) \approx \sum_n I_n \psi_n(r) \]
Application Domain

\[J(r) \approx \sum_n I_n \psi_n(r) \]

\[ZI = V \]
$$J(r) \approx \sum_n I_n \psi_n(r)$$

$$ZI = V$$
Parameterization of the Problem

- graph-theory analogy

\[
g = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1
\end{bmatrix}^T
\]
\[
t = \begin{bmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1
\end{bmatrix}^T
\]
Parameterization of the Problem

- graph-theory analogy

\[
g = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}^T
\]
\[
t = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}^T
\]
1. Construct matrices for each symmetry operator R:

$$R\psi_m (r) = \sum_{n=1}^{N} c_{mn}(R) \psi_n (r)$$
Mapping Matrices

1. Construct matrices for each symmetry operator R:

$$R\psi_m (r) = \sum_{n=1}^{N} c_{mn}(R) \psi_n (r)$$

2. Store the entries into matrices C:

$$C (R) = [c_{mn} (R)]$$
1. Construct matrices for each symmetry operator R:

$$R \psi_m (r) = \sum_{n=1}^{N} c_{mn}(R) \psi_n (r)$$

2. Store the entries into matrices C:

$$C (R) = [c_{mn} (R)]$$

3. Delete one of the (m,n)-th columns (reduce to linear independent vectors):

$$C \xrightarrow{\text{orth}} \hat{C}$$
Symmetry Matrices

Mapping Matrices

1. Construct matrices for each symmetry operator R:

$$ R \psi_m (r) = \sum_{n=1}^{N} c_{mn}(R) \psi_n (r) $$

2. Store the entries into matrices C:

$$ C (R) = [c_{mn} (R)] $$

3. Delete one of the (m,n)-th columns (reduce to linear independent vectors):

$$ C \xrightarrow{\text{orth}} \hat{C} $$

4. Combine symmetries (Note: rigorously, works for 1D irreducible representations only):

$$ C_i = \sum_{n} \chi_{n,i} C_n (R_n) \xrightarrow{\text{orth}} \hat{C} $$
Example: Mapping Matrices

\[
C(E) = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix},
\]

\[
C(\sigma_{yz}) = \begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}
\]

Irreducible representation of Cs group (odd–even):

\[
E \sigma_{yz} \quad A'_{+1} + A''_{+1} - 1
\]

Let us try the even (PMC) solution \((A': \chi_1 = +1, \chi_2 = +1)\)

\[
C(A') = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \times C(E) + 1 \times C(\sigma_{yz}) \quad \text{orth} \rightarrow b
\]

\[
C(A') = \sqrt{2} \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]
Example: Mapping Matrices

$$\sigma_{yz}$$

$$C(E) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C(\sigma_{yz}) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Irreducible representation of C_s group (odd–even):

$$E \sigma_{yz} A'_{+1} +1 \ A''_{+1} -1$$

Let us try the even (PMC) solution ($A': \chi_1 = +1, \chi_2 = +1$)

$$C A' = 1 \times C(E) + 1 \times C(\sigma_{yz}) \rightarrow b$$

$$C A' = \sqrt{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
Example: Mapping Matrices

\[
C(σ_{yz}) = \begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{pmatrix}
\]

Irreducible representation of Cs group (odd–even):

\[E σ_{yz} A^\prime +1 +1 A^\prime\prime +1 -1\]

Let us try the even (PMC) solution (\(A^\prime\): \(χ_1 = +1, χ_2 = +1\))

\[C A^\prime = 1 \times C(E) + 1 \times C(σ_{yz})\]

\[\rightarrow b\]

\[C A^\prime = \sqrt{2} \begin{pmatrix} 0 \\
1 \\
1 \end{pmatrix}\]
Example: Mapping Matrices

\[C(E) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \]
\[C(\sigma_{yz}) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

Irreducible representation of Cs group (odd–even):

\[E \sigma_{yz} A' + 1 + 1 A'' + 1 - 1 \]

Let us try the even (PMC) solution (\(A': \chi_1 = +1, \chi_2 = +1 \))

\[C A' = 1 \times C(E) + 1 \times C(\sigma_{yz}) \rightarrow b \]

\[C A' = \sqrt{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \]
Example: Mapping Matrices

\[
\mathbf{C}(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{C}(\sigma_{yz}) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
\]
Example: Mapping Matrices

\[C(E) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad C(\sigma_{yz}) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \]

Irreducible representation of Cs group (odd–even):

<table>
<thead>
<tr>
<th></th>
<th>(E)</th>
<th>(\sigma_{yz})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A')</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>(A'')</td>
<td>+1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Example: Mapping Matrices

\[
C(E) = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}, \quad C(\sigma_{yz}) = \begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{pmatrix}
\]

Irreducible representation of Cs group (odd–even):

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>σ_{yz}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A'</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>A''</td>
<td>+1</td>
<td>−1</td>
</tr>
</tbody>
</table>

Let us try the even (PMC) solution (A': $\chi_1 = +1$, $\chi_2 = +1$)

\[
C_{A'} = 1 \times C(E) + 1 \times C(\sigma_{yz}) \xrightarrow{\text{orth}} \hat{C}_{A'} = \frac{\sqrt{2}}{2} \begin{pmatrix}
0 \\
1 \\
1 \\
\end{pmatrix}
\]
Reduction of Operator Matrices

For any basis functions (both piece-wise and entire-domain):

\[\hat{A} = \hat{C}^T A \hat{C} \]

\[\hat{b} = \hat{C}^T b \]

\[\hat{g} = \hat{C}^T g \]
Reduction of Operator Matrices

For any basis functions (both piece-wise and entire-domain):

\[\hat{A} = \hat{C}^T A \hat{C} \]
\[\hat{b} = \hat{C}^T b \]
\[\hat{g} = \hat{C}^T g \]

Reduction of the EM problem as:

\[Z \mathbf{I} = V \rightarrow \hat{Z} \hat{I} = \hat{V}, \quad Z \in \mathbb{C}^{N \times N}, \quad \hat{Z} \in \mathbb{C}^{M \times M}, \quad M < N \]
Example 1: Compressed Matrix Decomposition and Inversion

\[\hat{A}\hat{I}_n = \lambda_n \hat{I}_n \]

\[\hat{I} = \hat{Z}^{-1}\hat{V} \]
Example 1: Compressed Matrix Decomposition and Inversion

\[\hat{A}\hat{I}_n = \lambda_n \hat{I}_n \]

\[\hat{I} = \hat{Z}^{-1}\hat{V} \]

Example: First three characteristic modes following all symmetry operations:
Example 2: Symmetry-Enforced Shape Optimization

\[
\begin{align*}
\text{minimize} & \quad f(\hat{\mathbf{I}}, \hat{\mathbf{g}}) \\
\text{subject to} & \quad \hat{\mathbf{Z}}(\hat{\mathbf{g}}) \hat{\mathbf{I}} = \hat{\mathbf{V}}
\end{align*}
\]

- Complexity spans from $O(M^3)$ to $O(p^M)$.

Miloslav Čapek, et al.
Shape Regularization via Point Group Symmetries
11 / 14
Example 2: Symmetry-Enforced Shape Optimization

\[
\begin{align*}
\text{minimize} & \quad f(\hat{I}, \hat{g}) \\
\text{subject to} & \quad \hat{Z}(\hat{g})\hat{I} = \hat{V}
\end{align*}
\]

- Complexity spans from $O(M^3)$ to $O(p^M)$.

\[\hat{C} = E \text{ (no symmetries)} \quad \quad \text{C}(\sigma_{yz}) \rightarrow \hat{C} \text{ (one reflection)}\]
Example 3: Symmetry-Preferred Shape Optimization

$$r_{\text{sym}}(R, g) = \frac{1}{N} \left\| |C(R)g| - g \right\|_1$$

$$f(g) = Q(I(g)) + w r_{\text{sym}}(g), \quad r_{\text{sym}} \in [0, 1]$$

$$w = 0$$
Example 3: Symmetry-Preferred Shape Optimization

\[r_{\text{sym}}(R, g) = \frac{1}{N} \left\| |C(R)g| - g \right\|_1 \]

\[f(g) = Q(I(g)) + w r_{\text{sym}}(g), \quad r_{\text{sym}} \in [0, 1] \]

\[w = 0 \]

\[w = 0.3 \]
Example 3: Symmetry-Preferred Shape Optimization

\[r_{\text{sym}}(R, g) = \frac{1}{N} \left\| |C(R)|g - g \right\|_1 \]

\[f(g) = Q(I(g)) + w r_{\text{sym}}(g), \quad r_{\text{sym}} \in [0, 1] \]

\[w = 0 \quad w = 0.3 \quad w = 1 \]
Example 3: Symmetry-Preferred Shape Optimization

\[r_{\text{sym}}(R, g) = \frac{1}{N} \left\| C(R)g - g \right\|_1 \]

\[f(g) = Q(I(g)) + w r_{\text{sym}}(g), \quad r_{\text{sym}} \in [0, 1] \]

\[w = 0 \quad w = 0.3 \quad w = 1 \]
Concluding Remarks

Implementation of Symmetries

- Based on point-group theory.
- Versatile and general (2D, 3D, ...).
- Applicable to problem solution, decomposition, or optimization.
- Easy to add to any method-of-moments code.

Magnetic trap for neutral particles: Symmetries
\((\sigma_z C_{4z})^n\) with \(n = \{1, 2, 3\}\) applied to reduce the number of unknowns to 1/4.
Concluding Remarks

Implementation of Symmetries

- Based on point-group theory.
- Versatile and general (2D, 3D, ...).
- Applicable to problem solution, decomposition, or optimization.
- Easy to add to any method-of-moments code.

Features

- Enforcing only a given type of solution and regularizing a shape.
- Accelerating a solution by decreasing number of optimization variables.

Magnetic trap for neutral particles: Symmetries $$(\sigma_z C_4)^n$$ with $n = \{1, 2, 3\}$$ applied to reduce the number of unknowns to $1/4$.

Miloslav Čapek, et al.

Shape Regularization via Point Group Symmetries

13 / 14
Questions?

Miloslav Čapek
miloslav.capek@fel.cvut.cz

March 31, 2022
version 1.0
The presentation is available at capek.elmag.org

Acknowledgment: This work has been supported by the Czech Science Foundation under project No. 21-19025M. The access to the computational infrastructure of the OP VVV funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics” is also gratefully acknowledged.