Accurate Evaluation of Characteristic Modes

Miloslav Capek1 Doruk Tayli2 Lamye Akrou3 Vit Losenicky1
Lukas Jelinek1 Mats Gustafsson2

1Department of Electromagnetic Field
Czech Technical University in Prague, Czech Republic
miloslav.capek@fel.cvut.cz

2Department of Electrical and Information Technology,
Lund University, Sweden

3Department of Electrical and Computer Engineering,
University of Coimbra, Portugal

The 12th European Conference on Antennas and Propagation
London, United Kingdom
April 12, 2018
This talk concerns:

- electric currents in vacuum (generalization is, however, straightforward),
- time-harmonic quantities, \(i.e., \mathcal{A}(r,t) = \text{Re} \{ \mathcal{A}(r) \exp(j\omega t) \} \).
Characteristic Mode Decomposition

Generalized eigenvalue problem\(^1\)

\[\mathbf{XI}_n = \lambda_n \mathbf{RI}_n, \]

\[\mathbf{Z} = \mathbf{R} + j\mathbf{X} \in \mathbb{C}^{N \times N} \text{ is impedance matrix, } \mathbf{I}_n \in \mathbb{R}^{N \times 1} \text{ are expansion coefficients.} \]

Characteristic Mode Decomposition

Generalized eigenvalue problem1

\[XI_n = \lambda_n RI_n, \]

\[Z = R + jX \in \mathbb{C}^{N \times N} \] is impedance matrix, \(I_n \in \mathbb{R}^{N \times 1} \) are expansion coefficients.

Benefits

- provide physical insight
- formalization of what antenna designers know and understand
- excellent entire-domain basis

Characteristic Mode Decomposition

Generalized eigenvalue problem\(^1\)

\[
X I_n = \lambda_n RI_n,
\]

\(Z = R + jX \in \mathbb{C}^{N \times N}\) is impedance matrix, \(I_n \in \mathbb{R}^{N \times 1}\) are expansion coefficients.

Benefits
- provide physical insight
- formalization of what antenna designers know and understand
- excellent entire-domain basis

but...
- hyped and sometimes misused (since used for everything)
- suffers from numerical problems
- incompatible with realistic feeding

Characteristic Mode Decomposition

Generalized eigenvalue problem

\[X I_n = \lambda_n R I_n, \]

\[Z = R + jX \in \mathbb{C}^{N \times N} \] is impedance matrix, \(I_n \in \mathbb{R}^{N \times 1} \) are expansion coefficients.

Benefits

- provide physical insight
- formalization of what antenna designers know and understand
- excellent entire-domain basis

but...

- hyped and sometimes misused (since used for everything)
- suffers from numerical problems
- incompatible with realistic feeding

Benchmark of CM Solvers: \textbf{Spherical Shell}^2, \(ka = 1/2 \)

\[\log_{10} |\lambda_n| \]

\text{TM/TE mode order}

\text{TM modes} \hspace{1cm} \text{TE modes}

\begin{tabular}{l}
\text{TM modes} \\
\text{TE modes} \\
\text{exact} \hspace{0.5cm} \text{AToM (1)} \\
\text{FEKO} \hspace{0.5cm} \text{AToM (8)} \\
\text{KS} \hspace{0.5cm} \text{WIPL-D} \\
\text{IDA} \hspace{0.5cm} \text{CEM One} \\
\text{CMC} \hspace{0.5cm} \text{Makarov} \\
\end{tabular}

Previous benchmark generated some important questions:

- How many modes can, in principle, be found?
- Is there a way how to increase their number?
- Is there a way how to accelerate solution if only few modes are needed?
Previous benchmark generated some important questions:

- How many modes can, in principle, be found?
- Is there a way how to increase their number?
- Is there a way how to accelerate solution if only few modes are needed?

Problem is predominantly caused by numerical dynamics of the \mathbf{R} matrix (naive interpretation: only a few modes radiate well. You will see later...).
Electric Field Integral Equation (EFIE)

EFIE for PEC bodies as the core of underlying MoM formulation:

\[
\hat{n} \times \mathbf{E}(r_2) = jk Z_0 \hat{n} \times \oint_{\Omega} \mathbf{G}(r_1, r_2) \cdot \mathbf{J}(r_1) \, dS_1,
\]

with dyadic Green function defined as

\[
\mathbf{G}(r_1, r_2) = \left(1 + \frac{1}{k^2} \nabla \nabla \right) \frac{e^{-jk|\mathbf{r}_1 - \mathbf{r}_2|}}{4\pi |\mathbf{r}_1 - \mathbf{r}_2|}.
\]
Electric Field Integral Equation (EFIE)

EFIE for PEC bodies as the core of underlying MoM formulation:

\[
\hat{n} \times \mathbf{E}(\mathbf{r}_2) = jk Z_0 \hat{n} \times \int_{\Omega} \mathbf{G}(\mathbf{r}_1, \mathbf{r}_2) \cdot \mathbf{J} (\mathbf{r}_1) \, dS_1,
\]

with dyadic Green function defined as

\[
\mathbf{G}(\mathbf{r}_1, \mathbf{r}_2) = \left(1 + \frac{1}{k^2} \nabla \nabla \right) \frac{e^{-jk|\mathbf{r}_1 - \mathbf{r}_2|}}{4\pi |\mathbf{r}_1 - \mathbf{r}_2|}.
\]

The impedance matrix \(\mathbf{Z} \) reads

\[
Z_{pq} = jk Z_0 \int_{\Omega} \int_{\Omega} \psi_p(\mathbf{r}_1) \cdot \mathbf{G}(\mathbf{r}_1, \mathbf{r}_2) \cdot \psi_q(\mathbf{r}_2) \, dS_1 \, dS_2.
\]
Spherical Wave Expansion of Dyadic Green Function

Spherical wave expansion of dyadic Green function reads\(^3\)

\[
G(r_1, r_2) = -jk \sum_{\alpha} u^{(1)}_{\alpha}(kr_<) u^{(4)}_{\alpha}(kr_>).
\] (4)

Spherical Wave Expansion of Dyadic Green Function

Spherical wave expansion of dyadic Green function reads\(^3\)

\[
G(r_1, r_2) = -jk \sum_{\alpha} u^{(1)}_{\alpha}(kr_<) u^{(4)}_{\alpha}(kr>).
\tag{4}
\]

Impedance matrix \(Z\) with spherical wave expansion substituted

\[
Z_{pq} = k^2 Z_0 \sum_{\alpha} \int_{\Omega} \int_{\Omega} \psi_p(r_1) \cdot u^{(1)}_{\alpha}(kr_<) u^{(4)}_{\alpha}(kr>) \cdot \psi_q(r_2) \, dS_1 \, dS_2.
\tag{5}
\]

Spherical wave expansion of dyadic Green function reads

\[G(r_1, r_2) = -jk \sum_{\alpha} u^{(1)}_{\alpha}(kr_<) u^{(4)}_{\alpha}(kr>). \]

(4)

Impedance matrix \(Z \) with spherical wave expansion substituted

\[Z_{pq} = k^2 Z_0 \sum_{\alpha} \int_{\Omega} \int_{\Omega} \psi_p(r_1) \cdot u^{(1)}_{\alpha}(kr_<) u^{(4)}_{\alpha}(kr>) \cdot \psi_q(r_2) \, dS_1 \, dS_2. \]

(5)

can be used for reformulation of matrix \(R \) since \(u^{(1)}_{\alpha}(kr) = \text{Re}\{u^{(4)}_{\alpha}(kr)\} \) as

\[R_{pq} = k^2 Z_0 \sum_{\alpha} \int_{\Omega} \psi_p(r_1) \cdot u^{(1)}_{\alpha}(kr_1) \, dS_1 \int_{\Omega} u^{(1)}_{\alpha}(kr_2) \cdot \psi_q(r_2) \, dS_2 \]

(6)

Spherical Wave Expansion of Dyadic Green Function

Spherical wave expansion of dyadic Green function reads

\[G(r_1, r_2) = -jk \sum_{\alpha} u_{\alpha}^{(1)}(kr_<) u_{\alpha}^{(4)}(kr>). \tag{4} \]

Impedance matrix \(Z \) with spherical wave expansion substituted

\[Z_{pq} = k^2 Z_0 \sum_{\alpha} \int_{\Omega} \int_{\Omega} \psi_p(r_1) \cdot u_{\alpha}^{(1)}(kr_<) u_{\alpha}^{(4)}(kr>) \cdot \psi_q(r_2) \, dS_1 \, dS_2. \tag{5} \]

can be used for reformulation of matrix \(R \) since \(u_{\alpha}^{(1)}(kr) = \text{Re}\{u_{\alpha}^{(4)}(kr)\} \) as

\[R_{pq} = k^2 Z_0 \sum_{\alpha} \left(\int_{\Omega} \psi_p(r_1) \cdot u_{\alpha}^{(1)}(kr_1) \, dS_1 \right) \left(\int_{\Omega} u_{\alpha}^{(1)}(kr_2) \cdot \psi_q(r_2) \, dS_2 \right) \]

\[\text{G. Kristensson, Scattering of electromagnetic waves by obstacles. Edison, NJ: SciTech Publishing, an imprint of the IET, 2016} \]
Definition of Projection Matrix \mathbf{S}

Resistance matrix \mathbf{R} is expressed as a product of two identical rectangular matrices:

$$ R_{pq} = \sum_{\alpha} \left(k \sqrt{Z_0} \int_{\Omega} \psi_p(r_1) \cdot \mathbf{u}_\alpha^{(1)}(kr_1) \, dS_1 \right) \left(k \sqrt{Z_0} \int_{\Omega} \mathbf{u}_\alpha^{(1)}(kr_2) \cdot \psi_q(r_2) \, dS_2 \right) $$
Definition of Matrix S

Resistance matrix R is expressed as a product of two identical rectangular matrices:

\[
R_{pq} = \sum_{\alpha} \left(k \sqrt{Z_0} \int_{\Omega} \psi_p(r_1) \cdot u^{(1)}_{\alpha}(k r_1) \, dS_1 \right) \left(k \sqrt{Z_0} \int_{\Omega} u^{(1)}_{\alpha}(k r_2) \cdot \psi_q(r_2) \, dS_2 \right)
\]

Definition\(^4\) of the matrix $S \in \mathbb{R}^{N_{\alpha} \times N}$

\[
S_{\alpha p} = k \sqrt{Z_0} \int_{\Omega} \psi_p(r) \cdot u^{(1)}_{\alpha}(k r) \, dS,
\]

and its relation to the resistance matrix

\[
R = S^T S.
\]

Matrix S is real-valued, rectangular, low-rank $N_\alpha = 2L(L+2)$.

$$L = \left\lceil k_\alpha + \frac{7}{3} \sqrt{k_\alpha + 2} \right\rceil.$$

Matrix $S^T S$ does not contain any negative eigenvalue higher than numerical noise.

Matrix S represents projection between RWGs and spherical waves, i.e.,

$$R = S^T S,$$

$$R_{\text{sph}} = SS^T.$$

α: spherical waves

$N_\alpha = 510, N = 900$

$N_\alpha = 510, N = 721$

Double precision
Properties of Matrix \mathbf{S}, Part #1

- Matrix \mathbf{S} is real-valued, rectangular, low-rank

$$N_\alpha = 2L(L + 2), \quad (8)$$
$$L = \lceil ka + 7\sqrt[3]{ka} + 2 \rceil. \quad (9)$$

Matrix \mathbf{S} does not contain any negative eigenvalue higher than numerical noise.

Matrix \mathbf{S} represents projection between RWGs and spherical waves, i.e.

$$\mathbf{R} = \mathbf{S}_T \mathbf{S}, \quad (10)$$
$$\mathbf{R}_{sph} = \mathbf{S}_S \mathbf{S}_T. \quad (11)$$

Double precision

α: spherical waves

Spherical shell, $N_\alpha = 510, N = 900$

Rectangular plate, $N_\alpha = 510, N = 721$
Definition of Matrix S

Properties of Matrix S, Part #1

- Matrix S is real-valued, rectangular, low-rank

$$N_\alpha = 2L(L + 2), \quad (8)$$
$$L = \lceil ka + 7\sqrt{ka} + 2 \rceil. \quad (9)$$

- Matrix $S^T S$ does not contain any negative eigenvalue higher than numerical noise.

\[
\sqrt{S_\alpha S_\alpha^T}
\]

\[\alpha: \text{spherical waves}\]

\[\alpha: \text{double precision}\]

\[\alpha: \text{spherical shell, } N_\alpha = 510, N = 900\]

\[\alpha: \text{rectangular plate, } N_\alpha = 510, N = 721\]
Properties of Matrix S, Part #1

- Matrix S is real-valued, rectangular, low-rank
 \[N_\alpha = 2L(L + 2), \quad (8) \]
 \[L = \lceil ka + 7\sqrt{ka} + 2 \rceil. \quad (9) \]

- Matrix $S^T S$ does not contain any negative eigenvalue higher than numerical noise.

- Matrix S represents projection between RWGs and spherical waves, i.e.,
 \[R = S^T S, \quad (10) \]
 \[R_{\text{sph}} = S S^T. \quad (11) \]
Radiated power can be calculated as

\[P_{\text{rad}} = \frac{1}{2Z_0} \int_{S^2} |F(\hat{r})|^2 \ dS \approx \frac{1}{2} I^H R I = \frac{1}{2} |S I|^2 = \frac{1}{2} \sum_{\alpha} |f_{\alpha}|^2 \] \hspace{1cm} (12)

with

\[F(\hat{r}) = \frac{1}{k} \sum_{\alpha} j^{l-\tau+2} f_{\alpha} Y_{\alpha}(\hat{r}), \] \hspace{1cm} (13)

where \(Y_{\alpha}(\hat{r}) \) are the real-valued spherical vector harmonics.
Properties of Matrix \mathbf{S}, Part #2

Radiated power can be calculated as

$$P_{\text{rad}} = \frac{1}{2Z_0} \int_{S^2} |\mathbf{F}(\hat{r})|^2 \, dS \approx \frac{1}{2} \mathbf{I}^H \mathbf{R} \mathbf{I} = \frac{1}{2} |\mathbf{S}\mathbf{I}|^2 = \frac{1}{2} \sum_{\alpha} |f_\alpha|^2$$ \hspace{1cm} (12)

with

$$\mathbf{F}(\hat{r}) = \frac{1}{k} \sum_{\alpha} j^{l-\tau+2} f_\alpha \mathbf{Y}_\alpha(\hat{r}),$$ \hspace{1cm} (13)

where $\mathbf{Y}_\alpha(\hat{r})$ are the real-valued spherical vector harmonics.

<table>
<thead>
<tr>
<th>Example</th>
<th>N_α</th>
<th>N</th>
<th>Comp. times in IDA (s)</th>
<th>\mathbf{R}</th>
<th>\mathbf{S}</th>
<th>$\mathbf{R} = \mathbf{S}^T \mathbf{S}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>spherical shell</td>
<td>880</td>
<td>750</td>
<td></td>
<td>0.09</td>
<td>0.009</td>
<td>0.011</td>
</tr>
<tr>
<td>spherical shell</td>
<td>880</td>
<td>3330</td>
<td></td>
<td>1.78</td>
<td>0.039</td>
<td>0.083</td>
</tr>
<tr>
<td>helicopter</td>
<td>880</td>
<td>18898</td>
<td></td>
<td>54.50</td>
<td>0.236</td>
<td>1.660</td>
</tr>
</tbody>
</table>
Singular value decomposition (SVD) of matrix S

$$S = UV^H,$$ \hspace{1cm} (14)

substituted into CM definition gives

$$(V^H XV)(V^HI_n) = \lambda_n (\Lambda^H \Lambda) (V^HI_n) \longrightarrow \tilde{X}I_n = \lambda_n \tilde{R}I_n,$$ \hspace{1cm} (15)
CMs Using SVD of matrix S and GEP Partitioning

Singular value decomposition (SVD) of matrix S

$$S = U\Lambda V^H,$$ \hspace{1cm} (14)

substituted into CM definition gives

$$\begin{pmatrix} V^HXV \end{pmatrix} \begin{pmatrix} V^HI_n \end{pmatrix} = \lambda_n \begin{pmatrix} \Lambda^H \Lambda \end{pmatrix} \begin{pmatrix} V^HI_n \end{pmatrix} \quad \rightarrow \quad \tilde{X}I_n = \lambda_n \tilde{R}I_n,$$ \hspace{1cm} (15)

Partitioning

$$\tilde{X}I = \begin{pmatrix} \tilde{X}_{11} & \tilde{X}_{12} \\ \tilde{X}_{21} & \tilde{X}_{22} \end{pmatrix} \begin{pmatrix} \tilde{I}_{1n} \\ \tilde{I}_{2n} \end{pmatrix} = \begin{pmatrix} \lambda_{1n} \tilde{R}_{11} \tilde{I}_{1n} \\ 0 \end{pmatrix}$$ \hspace{1cm} (16)

and reducing to Schur complement yields the final GEP formulation

$$\begin{pmatrix} \tilde{X}_{11} - \tilde{X}_{12} \tilde{X}_{22}^{-1} \tilde{X}_{21} \end{pmatrix} \tilde{I}_{1n} = \lambda_{1n} \tilde{R}_{11} \tilde{I}_{1n}.$$ \hspace{1cm} (17)
Modification of Generalized Eigenvalue Problem

Properties of the Decomposition:

Characteristic modes are constructed as

\[\tilde{I}_n = \begin{pmatrix} \tilde{I}_{1n} \\ -\tilde{X}^{-1}_{22} \tilde{X}_{21} \tilde{I}_{1n} \end{pmatrix}, \]

(18)

radiated power is implicitly normalized by \(\Lambda^H \Lambda \) matrix in (15)

\[\tilde{I}_n^H \tilde{R} \tilde{I}_m = \delta_{nm}. \]

(19)

Properties of the Decomposition:

Characteristic modes are constructed as

\[\tilde{I}_n = \begin{pmatrix} \tilde{I}_{1n} \\ -\tilde{X}^{-1}_{22} \tilde{X}_{21} \tilde{I}_{1n} \end{pmatrix}, \]

(18)

radiated power is implicitly normalized by \(\Lambda^H \Lambda \) matrix in (15)

\[\tilde{I}_n^H \tilde{R} \tilde{I}_m = \delta_{nm}. \]

(19)

Properties\(^4\):

- numerical dynamics doubled thanks to the SVD and partitioning,
- number of used spherical modes controls the number of CMs,
- for \(N_{\alpha} \ll N \) (always fulfilled in ESA regime) remarkable speed-up.

Spherical Shell

Decomposition With Matrix S

| TM/TE mode order | $\log_{10} |\lambda_n|$ |
|------------------|------------------|
| 168 | 10 |
| 120 | 10 |
| 80 | 10 |
| 48 | 10 |
| 24 | 10 |
| 8 | 10 |

- **TM modes**
- **TE modes**

- **exact**
- **$R, X, FEKO$**
- **$R, X, AToM$**

Spherical Shell

![Graph showing TM/TE mode order vs. log₁₀ |λₙ| for TM and TE modes, with data points for exact, R, X, FEKO, and R, X, AToM comparisons]
Spherical Shell

Decomposition With Matrix S

100 modes were calculated (eigs)

- \((X, R)\) 0.7 s (29)
- \((X, R) + \text{Advanpix}: 1324\) s
- \((\tilde{X}, \tilde{R})\) 0.5 s (37)

(If matrix \(S\) is reduced, calculation further accelerated.)
Decomposition With Matrix S

Rectangular Plate

100 modes were calculated (eigs)

- (X, R) 0.7 s (29)
- (X, R) + Advanpix: 1324 s
- (\tilde{X}, \tilde{R}) 0.5 s (37)

(If matrix S is reduced, calculation further accelerated.)
Decomposition With Matrix S

Rectangular Plate

100 modes were calculated (eigs)
- (\mathbf{X}, \mathbf{R}) 0.7 s (29)
- $(\mathbf{X}, \mathbf{R}) + \text{Advanpix}: 1324$ s
- $(\tilde{\mathbf{X}}, \tilde{\mathbf{R}}) 0.5$ s (37)

(If matrix S is reduced, calculation further accelerated.)
Two high-order modes of rectangular plate:

- left: inductive, $n = 17$,
 $\lambda_{17} = 2.461 \cdot 10^{17}$,
- right: capacitive, $n = 77$,
 $\lambda_{77} = -1.947 \cdot 10^{24}$.
Two high-order modes of rectangular plate:

- left: inductive, \(n = 17 \),
 \(\lambda_{17} = 2.461 \cdot 10^{17} \),
- right: capacitive, \(n = 77 \),
 \(\lambda_{77} = -1.947 \cdot 10^{24} \).

Such high-order modes are not needed in practice (except tracking).

- However, accuracy can be interchanged for comp. speed.
Acceleration of the CMs Decomposition

If double precision is enough, however, computational speed is required:

\[\mathbf{X}_I n = \lambda_n \mathbf{S}^T \mathbf{S} I_n \] \hspace{1cm} (20)

Properties:
- Solved in basis of spherical waves (\(\hat{I}_n = \mathbf{S} I_n \)),
- Standard (not generalized) eigenvalue problem,
- Solution of typically small \(N \alpha \times N \alpha \) eigenvalue problem (extreme speed-up),
- All modes, well-represented in the spherical basis, are found,
- eig shall be used instead of eigs in MATLAB.
Acceleration of the CMs Decomposition

If double precision is enough, however, computational speed is required:

\[\mathbf{XI}_n = \lambda_n \mathbf{S}^T \mathbf{SI}_n \] (20)

\[\mathbf{SI}_n = \lambda_n \mathbf{SX}^{-1} \mathbf{S}^T \mathbf{SI}_n \quad \rightarrow \quad \hat{\mathbf{XI}}_n = \xi_n \hat{\mathbf{I}}_n \] (21)

with \(\hat{\mathbf{X}} = \mathbf{SX}^{-1} \mathbf{S}^T \), \(\hat{\mathbf{I}}_n = \mathbf{SI} \), and \(\xi_n = 1/\lambda_n \).
Decomposition With Matrix S

Acceleration of the CMs Decomposition

If double precision is enough, however, computational speed is required:

$$\mathbf{XI}_n = \lambda_n \mathbf{S}^T \mathbf{SI}_n \quad (20)$$

$$\mathbf{SI}_n = \lambda_n \mathbf{SX}^{-1} \mathbf{S}^T \mathbf{SI}_n \quad \rightarrow \quad \hat{\mathbf{XI}}_n = \xi_n \hat{\mathbf{I}}_n \quad (21)$$

with $\hat{\mathbf{X}} = \mathbf{SX}^{-1} \mathbf{S}^T$, $\hat{\mathbf{I}}_n = \mathbf{SI}$, and $\xi_n = 1/\lambda_n$.

Properties:

- solved in basis of spherical waves ($\hat{\mathbf{I}}_n = \mathbf{SI}$),
- standard (not generalized) eigenvalue problem,
- solution of typically small $N_\alpha \times N_\alpha$ eigenvalue problem (extreme speed-up),
- all modes, well-represented in the spherical basis, are found,
- `eig` shall be used instead of `eigs` in MATLAB.
Acceleration of the CMs Decomposition – Comparison

<table>
<thead>
<tr>
<th>Example</th>
<th>CMs</th>
<th>N_α</th>
<th>N</th>
<th>Comp. times (s)</th>
<th>(\mathbf{R}, \mathbf{X})</th>
<th>($\tilde{\mathbf{R}}, \tilde{\mathbf{X}}$)</th>
<th>($\mathbf{S}\mathbf{X}^{-1}\mathbf{S}^T$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rectangular plate</td>
<td>100</td>
<td>510</td>
<td>655</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
<td>(510 modes)</td>
</tr>
<tr>
<td>spherical shell</td>
<td>300</td>
<td>880</td>
<td>3330</td>
<td>29</td>
<td>6.7</td>
<td>2.6</td>
<td>(880 modes)</td>
</tr>
<tr>
<td>helicopter</td>
<td>25</td>
<td>880</td>
<td>18898</td>
<td>149</td>
<td>170</td>
<td>47</td>
<td>(880 modes)</td>
</tr>
<tr>
<td>helicopter</td>
<td>100</td>
<td>880</td>
<td>18898</td>
<td>473</td>
<td>173</td>
<td>47</td>
<td>(880 modes)</td>
</tr>
</tbody>
</table>

Windows Server 2012, 2×Xeon E5-2665 @ 2.4 GHZ, 72 GB RAM
Acceleration of the CMs Decomposition – Comparison

<table>
<thead>
<tr>
<th>Example</th>
<th>CMs</th>
<th>N_α</th>
<th>N</th>
<th>Comp. times (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\tilde{R}, \tilde{X})</td>
</tr>
<tr>
<td>rectangular plate</td>
<td>100</td>
<td>510</td>
<td>655</td>
<td>0.7</td>
</tr>
<tr>
<td>spherical shell</td>
<td>300</td>
<td>880</td>
<td>3330</td>
<td>29</td>
</tr>
<tr>
<td>helicopter</td>
<td>25</td>
<td>880</td>
<td>18898</td>
<td>149</td>
</tr>
<tr>
<td>helicopter</td>
<td>100</td>
<td>880</td>
<td>18898</td>
<td>473</td>
</tr>
</tbody>
</table>

Windows Server 2012, 2×XEON E5-2665 @ 2.4 GHZ, 72 GB RAM

- (\tilde{R}, \tilde{X}) gives *significantly more* modes accurately and is *typically faster*.
- $(SX^{-1}S^T)$ gives *slightly more* modes accurately and is *significantly faster*.
- $(SX^{-1}S^T)$ finds all modes available from a given set of spherical harmonics.
- $(SX^{-1}S^T)$ decomposition is excellent for high ka with large DOFs N.

Capek, M., et al.
Restriction to TM/TE Modes

Matrix $S^{TM/TE} = S(i,:)$ contains TE and TM modes in separate rows.
Restriction to TM/TE Modes

Matrix $S^{TM/TE} = S(i,:) \text{ contains TE and TM modes in separate rows.}$
Restriction to TM/TE Modes

Matrix \(S^{\text{TM/TE}} = S(i,:) \) contains TE and TM modes in separate rows.

![Graph showing TM/TE mode order and \(\log_{10} |\lambda_n| \) for different methods: exact, \(\tilde{R}, \tilde{X} \) (TE only), \(R, X, \text{AToM} \), \(\tilde{R}, \tilde{X} \) (TM only).]
Concluding Remarks

Conclusions

- New matrix operator based on MoM formalism,
- matrix S has controllable and predictable behavior and numerically neat properties,
- matrix S has many applications (some of them probably yet unknown),
- if X is not needed, matrix S should be preferred over R,
- with respect to the (characteristic) modes, the matrix S is, in certain sense, a return to their scattering origin.5

Dominant characteristic mode of helicopter model discretized into 18989 RWGs, $ka = 1/2$.
Questions?

For a complete PDF presentation see capek.elmag.org

Miloslav Čapek
miloslav.capek@fel.cvut.cz

12. 04. 2018, v1.0