Excitation of Optimal and Suboptimal Currents

Miloslav Čapek1 Lukáš Jelínek1 Petr Kadlec2 Martin Štrambach3

1Department of Electromagnetic Field
Czech Technical University in Prague, Czech Republic
miloslav.capek@fel.cvut.cz

2Department of Radio Electronics
Brno University of Technology, Czech Republic

3Faculty of Information Technology
Czech Technical University in Prague, Czech Republic

The 11th European Conference on Antennas and Propagation
Paris, France
March 23, 2017
This talk concerns:

- electric currents in vacuum,
- time-harmonic quantities, \(i.e., A(r, t) = \text{Re} \{ A(r) \exp(j\omega t) \} \).
Optimal Currents – What Are They?

A current $\mathbf{J} = \mathbf{J}(r, \omega)$, $r \in \Omega$, is denoted \mathbf{J}_{opt} and called as optimal current\(^1\) if

$$\langle \mathbf{J}_{\text{opt}}, \mathbf{L}(\mathbf{J}_{\text{opt}}) \rangle = \min_J \langle \mathbf{J}, \{\mathbf{L}(\mathbf{J})\} \rangle = p_{\min},$$ \hspace{1cm} (1)

$$\langle \mathbf{J}_{\text{opt}}, \mathbf{M}_n(\mathbf{J}_{\text{opt}}) \rangle = q_n,$$ \hspace{1cm} (2)

$$\langle \mathbf{J}_{\text{opt}}, \mathbf{N}_n(\mathbf{J}_{\text{opt}}) \rangle \leq r_n.$$ \hspace{1cm} (3)

Optimal Currents – What Are They?

A current \(J = J(r, \omega), r \in \Omega \), is denoted \(J_{\text{opt}} \) and called as optimal current\(^1\) if

\[
\langle J_{\text{opt}}, \mathcal{L}(J_{\text{opt}}) \rangle = \min_J \langle J, \{ \mathcal{L}(J) \} \rangle = p_{\text{min}},
\]

\[
\langle J_{\text{opt}}, \mathcal{M}_n(J_{\text{opt}}) \rangle = q_n,
\]

\[
\langle J_{\text{opt}}, \mathcal{N}_n(J_{\text{opt}}) \rangle \leq r_n.
\]

What are the optimal currents good for?

- They establish fundamental bounds of \(p = \langle J, \mathcal{L}(J) \rangle \) for a given \(\Omega \) and \(\omega \).

Use case: Minimum quality factor \(Q \) for electrically small antennas.

Minimization of Quality Factor Q

Current J_{opt} minimizing quality factor Q of a given shape Ω:

$$Q(J_{\text{opt}}) = \min_J \{Q(J)\}$$ (4)
Minimization of Quality Factor Q

Current J_{opt} minimizing quality factor Q of a given shape Ω:

$$Q(J_{\text{opt}}) = \min_J \{Q(J)\}$$ (4)

Rao-Wilton-Glisson basis functions

$$J(r) \approx \sum_n I_n \psi_n(r)$$ (5)

$$Q(I) = \frac{2\omega \max\{W_m, W_e\}}{P_r} = \max\left\{ \frac{I^H X_m I, I^H X_e I}{I^H R I} \right\}$$ (6)

Minimum Quality Factor Q

Minimization of Quality Factor Q of a given shape Ω:

\[Q(J_{\text{opt}}) = \min_J \{ Q(J) \} \tag{4} \]

Rao-Wilton-Glisson basis functions

\[J(r) \approx \sum_n I_n \psi_n(r) \tag{5} \]

\[Q(I) = \frac{2\omega \max \{ W_m, W_e \}}{P_r} = \max \left\{ \frac{I^H X_m I, I^H X_e I}{I^H R I} \right\} \tag{6} \]

We know several efficient minimization procedures2.

Basis of Characteristic Modes

Diagonalization of impedance matrix $Z = R + jX$ as\(^3\)

$$XI_m = \lambda_m RI_m$$ \hspace{1cm} (7)

- useful set of entire-domain basis functions,

$$I = \sum_m \alpha_m I_m$$ \hspace{1cm} (8)

- only few modes needed to represent ESAs

$$\left(1 + j\lambda_m\right) \delta_{mn} = \frac{1}{2} I_m^H Z I_n.$$ \hspace{1cm} (9)

- meant originally for scattering problems\(^4\).

Optimal current can be approximated\(^5\) by

\[
Q(I_{\text{opt}}) \approx Q(I_1 + \alpha_{\text{opt}}I_2)
\]

\[\alpha_{\text{opt}} = \sqrt{-\frac{\lambda_1}{\lambda_2}}e^{-j\varphi} = \sqrt{-\frac{I_1^T X I_1}{I_2^T X I_2}}e^{-j\varphi}, \quad \varphi \in [-\pi, \pi]\]

The optimization problem can be advantageously solved in other bases as well!
Modal Composition of the Optimal Current J_{opt}

Optimal current with respect to minimum quality factor Q.
Solution Expressed in Characteristic Modes

Modal Composition of the Optimal Current J_{opt}

Optimal current with respect to minimum quality factor Q.

Dominant (dipole-like) characteristic mode J_1.

First inductive (loop-like) mode J_2, $\alpha_2 = 0.4553$.
Alternative Bases

- Stored energy modes6
 \[\omega \frac{\partial \mathbf{X}}{\partial \omega} \mathbf{I}_m = q_m \mathbf{R} \mathbf{I}_m, \]
 \[(12) \]

- Minimum quality factor Q modes7
 \[((1 - \nu) \mathbf{X}_m + \nu \mathbf{X}_e) \mathbf{I}_m = Q_{\nu m} \mathbf{R} \mathbf{I}_m, \]
 \[(13) \]

- Optimal gain G including losses in metalization8
 \[\mathbf{U} (\hat{e}, \hat{r}) \mathbf{I}_m = \zeta_m \frac{1}{8\pi} (\mathbf{R} + \mathbf{R}_\rho) \mathbf{I}_m, \]
 \[(14) \]

- Optimal radiation efficiency8
 \[\mathbf{R} \mathbf{I}_m = \zeta_m (\mathbf{R} + \mathbf{R}_\rho). \]
 \[(15) \]

Excitation of Optimal Currents

Optimal current I_{opt} for minimal quality factor Q.

- How to feed optimal currents?
Optimal current I_{opt} for minimal quality factor Q. Feeding map (abs values) for optimal current I_{opt}.

How to feed optimal currents?

- $V_{\text{opt}} = ZI_{\text{opt}}$

$$I = \sum_{n} \frac{I_{n}^{H}V}{1 + j\lambda_{n}} \frac{I_{n}^{H}R_{n}I_{n}}{I_{n}^{H}R_{n}I_{n}}$$

(16)

Čapek, M., et al.
Excitation of Optimal Currents

Optimal current I_{opt} for minimal quality factor Q.

Feeding map (abs values) for optimal current I_{opt}.

How to feed optimal currents?

1. $V_{\text{opt}} = ZI_{\text{opt}}$
 - Impressed currents in vacuum.
 - Shape has to be modified.
 - Can modal techniques help?

$$I = \sum_{n} \frac{I_n^H V}{1 + j\lambda_n} \frac{I_n}{I_n^H R I_n}$$ \hspace{1cm} (16)
How to Excite the Optimal Currents

Let us try to modify structure manually.

- A loop.
- 2 modes = at least two feeders?

Dependence of \(Q_{\text{min}} \) on number of (optimally placed) feeders.
How to Excite the Optimal Currents

Dependence of Q_{min} on number of (optimally placed) feeders.

Let us try to modify structure manually.
- A loop.
- 2 modes = at least two feeders?

- Rectangle: $Q_{\text{min}} = 69.5$
- Loop: $Q_{\text{min}} = 78.9$

Excited Characteristic Modes

As expected, solution represented by two CMs.

Even to excite two CMs properly, many feeders needed.

Dependence of ME coef. $|\alpha_n|$ on number of (optimally placed) feeders.
Antenna synthesis – how far can we go?

- On the present, only the heuristic optimization\(^9\),
Antenna synthesis – how far can we go?

- On the present, only the heuristic optimization\(^9\),
- triangles and edges can be subjects of pixelization.

Computational time: 12116 s

Result of heuristic structural optimization using MOGA NSGAI\(\text{II}\) from AToM-FOPS.
Antenna synthesis – how far can we go?

- On the present, only the heuristic optimization\(^9\),
- triangles and edges can be subjects of pixelization.

Computational time: 12116 s

\[\frac{Q(I)}{Q(I_{opt})} = 1.811 \]

Result of heuristic structural optimization using MOGA NSGAI from AToM-FOPS.

Resulting sub-optimal current approaching minimal value of quality factor Q.
Complexity of the Problem

- shape modification resembles NP-hard problem
- any extra feeder levels up the complexity enormously
Structure of the Solution Space

Complexity of the Problem

- shape modification resembles NP-hard problem
- any extra feeder levels up the complexity enormously

<table>
<thead>
<tr>
<th>How much DOF we have?</th>
<th>28</th>
<th>52</th>
<th>120</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (unknowns)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- possibilities
- unique solutions

Complexity of geometrical optimization for given voltage gap (red line) and N unknowns.
Complexity of the Problem

- Shape modification resembles an NP-hard problem.
- Any extra feeder levels up the complexity enormously.

How much DOF we have?

<table>
<thead>
<tr>
<th>N (unknowns)</th>
<th>28</th>
<th>52</th>
<th>120</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possibilities</td>
<td>$5.24 \cdot 10^{29}$</td>
<td>$1.39 \cdot 10^{68}$</td>
<td>$1.15 \cdot 10^{199}$</td>
<td>∞</td>
</tr>
<tr>
<td>Unique solutions</td>
<td>$2.68 \cdot 10^{8}$</td>
<td>$4.50 \cdot 10^{15}$</td>
<td>$1.33 \cdot 10^{36}$</td>
<td>∞</td>
</tr>
</tbody>
</table>

Complexity of geometrical optimization for given voltage gap (red line) and N unknowns.
Structure of Solution Space

- all combinations for $N = 28$ edges ($5.24 \cdot 10^{29}$) calculated in Matlab10
 - 3 days on supercomputer, 2 resulting vectors + permutation table ≈ 55 GB
all combinations for $N = 28$ edges ($5.24 \cdot 10^{29}$) calculated in Matlab10

- 3 days on supercomputer, 2 resulting vectors + permutation table ≈ 55 GB

Structure of all suboptimal solution within 2\% tolerance to the best found candidate. Edge no. 18 is fed.
Structure of Solution Space

- all combinations for $N = 28$ edges ($5.24 \cdot 10^{29}$) calculated in Matlab
 - 3 days on supercomputer, 2 resulting vectors + permutation table ≈ 55 GB

Structure of all suboptimal solution within 2% tolerance to the best found candidate. Edge no. 18 is fed.

Number of solutions in dependence on their quality factor Q. The best solution reaches $Q(\Omega_{opt}) \approx 292$.

Naive Alternative to Heuristic Algorithms

Deterministic algorithm dealing with shape optimization

- The worst edge (causing high quality factor Q) is iteratively removed.
Naive Alternative to Heuristic Algorithms

Deterministic algorithm dealing with shape optimization

- The worst edge (causing high quality factor Q) is iteratively removed.

Computational time: 1155 s

Result of deterministic in-house algorithm removing in each iteration “the worst” edge.
Naive Alternative to Heuristic Algorithms

Deterministic algorithm dealing with shape optimization
▶ The worst edge (causing high quality factor Q) is iteratively removed.

Computational time: 1155 s

$Q(I)/Q(I_{opt}) = 1.813$

Result of deterministic in-house algorithm removing in each iteration “the worst” edge.

Resulting current given by in-house deterministic algorithm.
Mesh grid converted to graph.

- Longest cycle (loop) or path (dipole) in a mesh are NP hard.
- Can adaptive meshing help?
- Convergence of mesh grid has to be controlled.
Longest cycle (loop) or path (dipole) in a mesh are NP hard.

- Can adaptive meshing help?
- Convergence of mesh grid has to be controlled.

Mesh grid converted to graph.

Can we somehow combine heuristic and our knowledge?
Current and Antenna Optimization

Current optimization

▶ lower bounds,

Antenna optimization

▶ real performance,

Can modal techniques help?

▶ Understanding and interpretation of the solution.

▶ For matrix compression, i.e.,\[A_{\text{red}} = [I_{\text{H}} A_{\text{full}} I_{\text{N}}]. \]
Current and Antenna Optimization

Current optimization

- lower bounds,
- can be calculated “for free”,

Antenna optimization

- real performance,
- NP-hard (NP-complete),

Can modal techniques help?

- Understanding and interpretation of the solution.
- For matrix compression, i.e., \(A_{\text{red}} = [I_H A_{\text{full}} I_n]\).
Current and Antenna Optimization

Current optimization
- lower bounds,
- can be calculated “for free”,
- convex optimization,

Antenna optimization
- real performance,
- NP-hard (NP-complete),
- heuristic optimization,

Can modal techniques help?
- Understanding and interpretation of the solution.
- For matrix compression, i.e., $A_{red} = \begin{bmatrix} I & H \end{bmatrix} A_{full} \begin{bmatrix} I \\ I \end{bmatrix}$.
- New operators \rightarrow new decompositions.
Current and Antenna Optimization

Current optimization
- lower bounds,
- can be calculated “for free”,
- convex optimization,
- no support, only current,

Antenna optimization
- real performance,
- NP-hard (NP-complete),
- heuristic optimization,
- (modified) shape,
Current and Antenna Optimization

Current optimization
- lower bounds,
- can be calculated “for free”,
- convex optimization,
- no support, only current,
- \(N \) feeders.

Antenna optimization
- real performance,
- NP-hard (NP-complete),
- heuristic optimization,
- (modified) shape,
- \(n \ll N \) feeders.

Can modal techniques help?
- Understanding and interpretation of the solution.
- For matrix compression, \(i.e., \mathbf{A}_{\text{red}}^I = [\mathbf{I}_m^H \mathbf{A}_{\text{full}} \mathbf{I}_n] \).
- New operators \(\rightarrow \) new decompositions.
Questions?

For a complete PDF presentation see capek.elmag.org

Miloslav Čapek
miloslav.capek@fel.cvut.cz

23. 03. 2017, v1.0