Mathematical Nomenclature

Miloslav Čapek

Department of Electromagnetic Field Czech Technical University in Prague, Czech Republic miloslav.capek@fel.cvut.cz

> Prague, Czech Republic November 6, 2018

Outline

Mathematical Nomenclature
Nomenclature – Rules

Disclaimer:

- ▶ I am not an expert in the topic, just a fan.
- ▶ Often just a best practice or personal experience is presented.

About the Talk

- ► Extremely wide topic. Here: overview only!
 - From pure aesthetics, through typography, typesettings, graphics, towards colors, proportions, data processing and DTP (desktop publishing).
 - High-level (style, stylistic, templates) to low-level (figures, tables, lists, headings),
 - Appropriate number of seminars would span an entire semester.
 - Instead of being complete, let's build some interest in the topic.
- \triangleright what? \times how?
- ▶ Mainly for technical writing.

Be prepared for a slow going learning curve.

Structure of the Talk

Why?

- ▶ Because "good enough" is not your way...
- ▶ Because you respect standards and good practice.
- ▶ Because quality of your work and its presentation goes hand-in-hand.

Mathematical Nomenclature

Serves

- ► clarity,
- ▶ standardization.

Known standards:

- ▶ ISO (International Organization for Standardization),
- ► ANSI (American National Standards Institute),
- ▶ IEEE (Institute of Electrical and Electronics Engineers),
- ▶ IUPAP (International Union of Pure and Applied Physics),
- ► ČSN.

ISO 80000

International standards for physical quantities and units, part 1.

Part	Year	r Name Replaces	
ISO 80000-1	2009	General	ISO 31-0, IEC 60027-1, and IEC 60027-3
ISO 80000-2	2009	Mathematical signs and symbols to be used in the natural sciences and technology	ISO 31-11, IEC 60027-1
ISO 80000-3	2006	Space and time	ISO $31-1$ and ISO $31-2$
ISO 80000-4	2006	Mechanics	ISO 31-3
ISO 80000-5	2007	Thermodynamics	ISO 31-4
ISO 80000-6	2008	Electromagnetism	ISO 31-5 and IEC 60027-1
ISO 80000-7	2008	Light	ISO 31-6
ISO 80000-8	2007	Acoustics	ISO 31-7

ISO 80000

International standards for physical quantities and units, part 2.

Part	Year	Name	Replaces
ISO 80000-9	2008	Physical chemistry and molecular physics	ISO 31-8
ISO 80000-10	2009	Atomic and nuclear physics	ISO 31-9 and ISO 31-10
ISO 80000-11	2008	Characteristic numbers	ISO 31-12
ISO 80000-12	$2009 \\ 2008$	Solid state physics	ISO 31-13
ISO 80000-13		Information science and technology	IEC 60027-2:2005 and
ISO 80000-14	2008	Telebiometrics related to human physiology	IEC 60027-3 IEC 60027-7

- ► SI units (not only) used.
- ▶ One unit is \in 138.

Variables and Units

$$f_0 = \{f_{\text{quantity}}\} [f_{\text{unit}}] = 12345(67) \text{ Hz}$$

- ▶ Quantity always in **italic**.
 - Note that 12345 ± 67 Hz is incorrect from mathematical point of view.
- ▶ Unit always in **roman**.
 - A short space (\, in LaTeX) placed between the quantity and the unit symbol (except the units of degree, minute, and second).
 - Units are always in lowercase (meter, second), except those derived from a proper name of a person (Tesla, Volt) and symbols containing signs in exponent position (°C).
 - Different units are separated by a space (N m not Nm) or a c-dot $(1 \text{ N} \cdot \text{m})$.
 - Prefixes are written in roman with no space between symbol and prefix (1 THz vs. 1 T Hz vs. 1 T Hz).
 - $l = 1.31 \times 10^3 \,\mathrm{m}$, $l = 1.31 \cdot 10^3 \,\mathrm{m}$, $S = 20 \,\mathrm{m} \times 30 \,\mathrm{m}$.

Decimal Sign and Exponents

- \triangleright Decimal sign is either a comma or a point (1, 234 or 1.234).
- ▶ Numbers can be grouped from the decimal sign or from left (12 345.6789 or 1 234), use small space then.
- ▶ Negative exponents should be avoided when the numbers are used, except when the base 10 is used $(10^{-5} \text{ not } 4^{-8}, \text{ type } 1/4^8 \text{ instead})$.
- ▶ Multiplication with · or ×. Do not use any symbol for products like ab, \mathbf{Ax} , etc. Use when multiplication operation has to be highlighted, *i.e.*, multi-line equation or $2.125 \cdot 10^8$.
- ▶ Number of significant digits (410 008 vs 410000 vs $4.1 \cdot 10^5$).

▶ Unit prefixes

▶ Mathematical symbols

▶ Guide for the use of SI units

Constants

mathematical Dimensionless with fixed numerical value of no direct physical meaning or necessity of a physical measurement.

 \triangleright Examples: Archimedes' constant (π) , Euler's number (e), imaginary unit (j).

physical Often carry dimensions, they are universal and constant in time.

▶ Examples: speed of light in vacuum (c_0) , electron charge (e), permittivity of vacuum (ε_0) , impedance of vacuum (Z_0) .

mathematical always in roman type, i.e., $e^{i\pi} + 1 = 0$ physical always in italic type, i.e., $2c_0$, cf. e^2 vs. e^2

Functions

Functions always in roman, they are not variables!

$$\sin(xy), y \sin x$$

$$j_1(x), -jj_1(x)$$

$$\lim_{x \to \infty} f(x)$$

Use parentheses whenever clarity is in question.

Sub- and Superscripts

- ▶ Italic: index represents an unknown variable or a running number/index/counter:
 - $\sum_{n} \alpha_{n} f_{n}(x), c_{i}, z_{mn}, \mathbf{u}_{\tau \rho m l}^{(p)}(kr).$
- ▶ Roman: index represents a number or an abbreviation:
 - $\varepsilon_{\rm r}$, c_0 , $P_{\rm rad}$, $Q_{\rm lb}$.
- ▶ Should not be overused $(n_0^{m^{k^l}})$.
- 1. Whenever possible, simplify and shorten, i.e., $n_0 \to \hat{n}$, $P_{\text{radiated}} \to P_{\text{rad}}$.
- 2. Prioritize clarity, consistence.

In-line and Full Equations

Different approach needed, cf.

$$\frac{a}{b} \qquad a/b$$

$$\lim_{x \to \infty} f(x) \qquad \lim_{x \to \infty} f(x)$$

$$e^{-j\omega t} \qquad \exp\{-j\omega t\}$$

$$\int_{0}^{2\pi} \frac{x}{x+a} dx \qquad \int_{0}^{2\pi} x/(x+a) dx$$

- ▶ In-line equations prioritize space-saving strategy.
- ▶ Equations are always a part of the text.

Integration

A small space between integrand and differential, differential roman typed:

$$\frac{1}{T} \int_{t}^{t+T} \int_{\Omega} f(\boldsymbol{r}, t) \, dV \, dt, \quad \boldsymbol{r} \in \Omega.$$

- ▶ Be careful about in-line and full equations, *i.e.*, usage of \int and \int .
- Limits of integral are written over and under the symbol, unless spatial requirements prevents it (in-line eq.).
- ▶ The variable of integration shall be written in italics if it relates to a coordinate system or if the integration domain has explicitly defined limits, roman otherwise.

Mathematical Nomenclature

Differentiation

$$\frac{\mathrm{d}f\left(x\right)}{\mathrm{d}x}$$

$$\nabla \cdot \boldsymbol{J}\left(\boldsymbol{r}\right) = -\frac{\partial \rho\left(\boldsymbol{r}\right)}{\partial t}$$

Vector identities: $\mathbf{r}_1 \cdot \mathbf{r}_2$, $\mathbf{r}_1 \times \mathbf{r}_2$, ± 5 , f', f''

For fans: partial derivative should be rotated to be typed roman.

▶ Typesetting mathematics for science, Beccari C., 1997

Usage of Equations, Part 1

Be careful about the details

$$f = \frac{1}{1 + \frac{\pi}{2}n}$$
 vs. $f = \frac{1}{1 + \frac{\pi}{2}n}$.

Keep in mind that equation is always a part of the text, i.e.,

$$g = x \left(\frac{n}{2} + (k^2 - 2(x - 3))\right)$$
 vs. $g = x(\frac{n}{2} + (k^2 - 2(x - 3))),$

and no matter if properly typed (left) or not (right).

If sentence continues below an equation, no indentation (no paragraph).

▶ MathType can be used for initial code generation.

Usage of Equations, Part 2

Complex numbers:

$$z = \underbrace{x}_{\text{real}} + \mathbf{j} \underbrace{y}_{\text{imaginary}} = \text{Re} \{z\} + \mathbf{j} \text{Im} \{z\},$$

not $\Re\{z\} + j\Im\{z\}$ (this is obsolete).

- ▶ Transpose \mathbf{A}^{T} , complex conjugate z^* , Hermitian conjugate $(\mathbf{A}^*)^{\mathrm{T}} \equiv \mathbf{A}^{\mathrm{H}}$.
- \blacktriangleright More equations are always separated (e.g., by a comma).
- ▶ Physical units always on the same line as the equation.
- ▶ Prepositions and conjunctions should not be alone at the end of the line.

▶ The comprehensive LTPXsymbol list

Vectors and Matrices

Scalars, vectors, dyads, matrices, and unit vectors.

a	a scalar number
a_m	an element of a vector \mathbf{a}
a_{mn}	an element of a matrix \mathbf{A}
\mathbf{a}	a vector
$oldsymbol{a}$	a vector function
\mathbf{a}_n	a column of a matrix
$\boldsymbol{\hat{a}}$	unit vector
${f A}$	a matrix
$oldsymbol{A}$	a (time-harmonic) vector function, phasor
${\cal A}$	a functional or a time-dependent function
${\cal A}$	a vector time-dependent function
\mathbb{A}	a field, a domain

Brackets

Brackets and their usage (personal preference).

()	$ \begin{array}{c} x\left(x+2\right) \\ f\left(x\right) \end{array} $	structuring of an equation arguments of a function
	$x \in (0,1)$	an open interval
[]	$\begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^{\mathrm{T}} \\ x \in [0, 5]$	a vector, a matrix a closed interval
{}	$n \in \{1, \dots, N\}$ $\mathcal{L}\left\{oldsymbol{J}_1\left(oldsymbol{r} ight), oldsymbol{J}_2\left(oldsymbol{r} ight) ight\}$	set operations arguments of operators and transformations
〈 〉	$raket{m{x}, \mathcal{L} \{m{x}\}}{\phi \psi angle}$	inner product bra–ket
	$ oldsymbol{x} $	absolute value, modulus
$\lceil \rceil, \lfloor \rfloor$	$\lceil x \rceil, \lfloor x \rfloor$	ceiling, floor

Matrix Typesetting

Linear system $\mathbf{y} = \mathbf{A}\mathbf{x}$, quadratic form $y = \mathbf{x}^{\mathrm{H}}\mathbf{A}\mathbf{x}$.

$$\mathbf{C}_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{C}_{\mathcal{B}} R_{\infty} \mathbf{C}_{\mathcal{B}}^{\mathrm{T}} = \begin{bmatrix} R_{\infty} & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & R_{\infty} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

System of Equations, Complicated Equations

$$f(x) = x^4 + 7x^3 + 2x^2 + 10x + 12$$
 (1)

$$f(x) = ax^2 + bx + c (2)$$

$$f'(x) = 2ax + b (3)$$

$$C_{\mathcal{B},nn} = \begin{cases} 0 & \Leftrightarrow n \notin \mathcal{B} \\ 1 & \Leftrightarrow \text{ otherwise} \end{cases}$$

When you are not sure, google it out! (tex.stackexchange.com)

Some Hints

- Leslie's Corner
 - 1. "the free space" (not "free space")
 - 2. "wave-number" (not "wavenumber" or "wave number")
 - 3. "the speed of light" (not "speed of light")
 - 4. "Poynting's theorem" (not "Poynting theorem")
 - 5. "Maxwell's equations" (not "Maxwell equations")
 - 6. "energy in a vacuum" (not "energy in vacuum")
 - 7. "state-of-the-art" (not "state of the art")
 - 8. and many, many others...
 - \blacktriangleright "radiation efficiency η ", not only " η " should be used thorough the text

Questions?

For a complete PDF presentation see Capek.elmag.org

Miloslav Čapek miloslav.capek@fel.cvut.cz

November 8, 2018, v1.2