Current Optimization for Electrically Small Antennas

Miloslav Čapek

Department of Electromagnetic Field
CTU in Prague, Czech Republic
miloslav.capek@fel.cvut.cz

Seminar at KTH
Stockholm, Sweden
January 18, 2017
Outline

1. Current Optimization
2. Minimum Quality Factor Q
3. Modal Approach
4. Optimal Composition of Modes
5. On the Natural Bases
6. Summary and Concluding Remarks

In this talk:
- electric currents in vacuum,
- only surface regions are treated,
- time-harmonic quantities, \(\mathbf{A}(r, t) = \text{Re} \{ \mathbf{A}(r) \exp(j\omega t) \} \) are considered,
- be extremely careful when comparing different sources (papers): different notation!
“Is it beneficial to be here today?”

Do you know the following publications well?

Antenna Analysis × Synthesis and Antenna Design

Antenna analysis × antenna synthesis.
Antenna Analysis × Synthesis and Antenna Design

Antenna analysis studies...

- antenna parameters for a given antenna.

Antenna analysis × antenna synthesis.
Antenna Analysis \times Synthesis and Antenna Design

Antenna analysis studies...
- antenna parameters for a given antenna.

Antenna synthesis seeks for...
- optimal currents,
- optimal feeding (placement),
- optimal material.

Antenna analysis \times antenna synthesis.
Antenna Analysis × Synthesis and Antenna Design

Antenna analysis studies...
- antenna parameters for a given antenna.

Antenna synthesis seeks for...
- optimal currents,
- optimal feeding (placement),
- optimal material.

Antenna design tries to find...
- the optimal combination of shape, material and feeding from infinitely many candidates.
Historical Overview

Former approaches to antenna design predominantly made use of

- circuit quantities\(^1\) \((V_{\text{in}}, Z_{\text{in}}, \Gamma, \ldots)\) → equivalent circuits,

Historical Overview

Former approaches to antenna design predominantly made use of

- circuit quantities\(^{1}\) \((V_{\text{in}}, Z_{\text{in}}, \Gamma, \ldots)\) → equivalent circuits,
- field quantities\(^{2}\) \((\mathbf{E}, \mathbf{H})\).

Former approaches to antenna design predominantly made use of

- circuit quantities\(^1\) \((V_{\text{in}}, Z_{\text{in}}, \Gamma, \ldots) \rightarrow \) equivalent circuits,
- field quantities\(^2\) \((\mathbf{E}, \mathbf{H})\).

However,

- all antenna parameters can be inferred from source current\(^3\) \((\mathbf{J}, \mathbf{M})\)

\[
p = \langle \mathbf{J}, \mathbf{L}(\mathbf{J}) \rangle.
\]

\[
\langle \mathbf{f}, \mathbf{L}(\mathbf{g}) \rangle = \int_{\Omega} \mathbf{f}^* (\mathbf{r}) \cdot \mathbf{L}(\mathbf{g}(\mathbf{r})) \, dV
\]

All antenna parameters can be inferred directly from source current

\[p = \langle J, \mathcal{L}(J) \rangle. \]

(1)
Operators to Rule Them All . . .

All antenna parameters can be inferred directly from source current

\[p = \langle J, \mathcal{L}(J) \rangle. \]

(1)
Operators to Rule Them All...

All antenna parameters can be inferred directly from source current

\[p = \langle J, \mathcal{L} (J) \rangle. \]

Observations:
- only properties of the operators are important,
- physics is imprinted in their structure,
- can be represented in many different ways, e.g., \[\langle \psi_m, \mathcal{L} \psi_n \rangle, \] \[\langle J_p, \mathcal{L} J_q \rangle, \]
- as compared to fields, the current support is limited.

\[\langle f, g \rangle = \int_{\Omega} f^* (r) \cdot g (r) \, dV \]
Example: Radiated and Reactive Power

Consider Electric Field Integral Equation\(^4\) written as

\[
\mathcal{Z}(\mathbf{J}) = -\hat{n} \times \hat{n} \times \mathbf{E}^i(\mathbf{J})
\]

Consider Electric Field Integral Equation \(^4\) written as

\[
\mathcal{Z}(\mathbf{J}) = -\hat{n} \times \hat{n} \times \mathbf{E}^i(\mathbf{J})
\]

(2)

and let us represent it in a basis \(\{\psi_n\}, n \in \{1, \ldots, N\}\) as \(\mathbf{Z} = [Z_{mn}]\), in which

\[
Z_{mn} = \langle \psi_m, \mathcal{Z}(\psi_n) \rangle = -\frac{jZ_0}{4\pi} \int_{\Omega} \int_{\Omega'} \left(k \psi_m^* \cdot \psi_n - \frac{1}{k} \nabla \cdot \psi_m^* \nabla' \cdot \psi_n \right) \frac{e^{-jk|\mathbf{r} - \mathbf{r}'|}}{|\mathbf{r} - \mathbf{r}'|} \ d\Omega' \ d\Omega
\]

(3)

Example: Radiated and Reactive Power

Consider Electric Field Integral Equation\(^4\) written as

\[
\mathbf{Z} (\mathbf{J}) = -\hat{n} \times \hat{n} \times \mathbf{E}^i (\mathbf{J})
\]

and let us represent it in a basis \(\{\psi_n\}, n \in \{1, \ldots, N\}\) as \(\mathbf{Z} = [Z_{mn}]\), in which

\[
Z_{mn} = \langle \psi_m, \mathbf{Z} (\psi_n) \rangle = -\frac{jZ_0}{4\pi} \int_{\Omega} \int_{\Omega'} \left(k \psi_m^* \cdot \psi_n - \frac{1}{k} \nabla \cdot \psi_m^* \nabla' \cdot \psi_n \right) \frac{e^{-jk|r-r'|}}{|r-r'|} d\Omega' d\Omega
\]

or even more as

\[
(1 + j\lambda_m) \delta_{mn} = \frac{1}{2} \langle \mathbf{I}_m, \mathbf{ZI}_n \rangle = \frac{1}{2} \mathbf{I}_m^H \mathbf{ZI}_n.
\]

Example: Radiated and Reactive Power

Consider Electric Field Integral Equation4 written as

\[\mathbf{Z}(\mathbf{J}) = -\hat{n} \times \hat{n} \times \mathbf{E}^i(\mathbf{J}) \] \hspace{1cm} (2)

and let us represent it in a basis \{\psi_n\}, \(n \in \{1, \ldots, N\} \) as \(\mathbf{Z} = [Z_{mn}] \), in which

\[Z_{mn} = \langle \psi_m, \mathbf{Z}(\psi_n) \rangle = -\frac{jZ_0}{4\pi} \int_{\Omega} \int_{\Omega'} \left(k \psi_m^* \cdot \psi_n - \frac{1}{k} \nabla \cdot \psi_m^* \nabla' \cdot \psi_n \right) \frac{e^{-jk|r-r'|}}{|r-r'|} \, d\Omega' \, d\Omega \] \hspace{1cm} (3)

or even more as

\[(1 + j\lambda_m) \delta_{mn} = \frac{1}{2} \langle \mathbf{I}_m, \mathbf{ZI}_n \rangle = \frac{1}{2} \mathbf{I}_m^H \mathbf{ZI}_n. \] \hspace{1cm} (4)

\begin{itemize}
 \item All common algebraic operations are available for (3).
 \item Representation (4) profitably diagonalizes impedance operator (matrix).
\end{itemize}

Current Optimization for Electrically Small Antennas

Source Concept $(\mathcal{I}, \mathcal{M})$

- Perspective topology and geometry
- Modal decompositions
- HPC, algorithm efficiency
- Heuristic or convex optimization
- Integral and variational methods
Source Concept

Sketch of main fields of the source concept.

Source concept

\(\mathbf{J} \) completely by a source currents \(\mathbf{J} \) (and \(\mathbf{M} \)),

\[\mathbf{J} \equiv \mathbf{M} \equiv 0 \iff r \notin \Omega. \]
A current $J = J(r, \omega)$, $r \in \Omega$, is denoted J_{opt} and called as optimal current iff

$$\langle J_{\text{opt}}, \mathcal{L}(J_{\text{opt}}) \rangle = \min_J \langle J, \{\mathcal{L}(J)\} \rangle = p_{\text{min}},$$ \hfill (5)

$$\langle J_{\text{opt}}, \mathcal{M}_n(J_{\text{opt}}) \rangle = q_n,$$ \hfill (6)

$$\langle J_{\text{opt}}, \mathcal{N}_n(J_{\text{opt}}) \rangle \leq r_n.$$ \hfill (7)
Optimal Currents – What They Are?

A current $\mathbf{J} = \mathbf{J}(r, \omega)$, $r \in \Omega$, is denoted \mathbf{J}_{opt} and called as optimal current iff

$$\langle \mathbf{J}_{\text{opt}}, \mathcal{L}(\mathbf{J}_{\text{opt}}) \rangle = \min_J \langle \mathbf{J}, \{\mathcal{L}(\mathbf{J})\} \rangle = p_{\text{min}}, \quad (5)$$

$$\langle \mathbf{J}_{\text{opt}}, \mathcal{M}_n(\mathbf{J}_{\text{opt}}) \rangle = q_n, \quad (6)$$

$$\langle \mathbf{J}_{\text{opt}}, \mathcal{N}_n(\mathbf{J}_{\text{opt}}) \rangle \leq r_n. \quad (7)$$

- What are the optimal currents good for?
 - They establish fundamental bounds of $p = \mathcal{L}(\mathbf{J})$ for a given Ω, ω.

- How to find them?
 - You will see...

- Can they be realized?
 - Only as impressed currents (they are unrealistic).
Optimal Currents – What They Are?

A current $J = J(r, \omega)$, $r \in \Omega$, is denoted J_{opt} and called as optimal current iff

$$\langle J_{opt}, \mathcal{L}(J_{opt}) \rangle = \min_J \langle J, \{\mathcal{L}(J)\} \rangle = p_{\text{min}}, \quad (5)$$

$$\langle J_{opt}, \mathcal{M}_n(J_{opt}) \rangle = q_n, \quad (6)$$

$$\langle J_{opt}, \mathcal{N}_n(J_{opt}) \rangle \leq r_n. \quad (7)$$

► What are the optimal currents good for?
 - They establish fundamental bounds of $p = \mathcal{L}(J)$ for a given Ω, ω.

► How to find them?
 - You will see…

► Can they be realized?
 - Only as impressed currents (they are unrealistic).

The rest of the presentation is about \mathcal{L} and techniques how to find J_{opt}.

Čapek, M., CTU in Prague
Case Study: Minimization of Quality Factor Q

Quality factor Q
- is (generally) inversely proportional to fractional bandwidth (FBW),
- therefore, of interest for electrically small antennas (ESA, $ka < 1/2$).
Quality factor Q
- is (generally) inversely proportional to fractional bandwidth (FBW),
- therefore, of interest for electrically small antennas (ESA, $ka < 1/2$).

Current J_{opt} minimizing quality factor Q of a given shape Ω:

$$Q(J_{\text{opt}}) = \min_{J} \{Q(J)\} \quad (8)$$

How to find J_{opt} for a given Ω?
Procedure Undertaken in This Presentation

Procedure followed in this talk:

STEP 1 representation of operators as matrices,
Procedure Undertaken in This Presentation

Procedure followed in this talk:

STEP 1 representation of operators as matrices,

STEP 2 definition of quality factor Q and stored energy W_{sto},
Procedure Undertaken in This Presentation

Procedure followed in this talk:

STEP 1 representation of operators as matrices,

STEP 2 definition of quality factor Q and stored energy W_{sto},

STEP 3 formulation of optimization task related to (8),
Procedure Undertaken in This Presentation

Procedure followed in this talk:

STEP 1 representation of operators as matrices,
STEP 2 definition of quality factor Q and stored energy W_{sto},
STEP 3 formulation of optimization task related to (8),

STEP 4 representation of a solution in an appropriate basis,
Procedure followed in this talk:

STEP 1 representation of operators as matrices,

STEP 2 definition of quality factor Q and stored energy W_{sto},

STEP 3 formulation of optimization task related to (8),

STEP 4 representation of a solution in an appropriate basis,

STEP 5 optimal composition of modal currents,
Procedure Undertaken in This Presentation

Procedure followed in this talk:

STEP 1 representation of operators as matrices,
STEP 2 definition of quality factor Q and stored energy W_{sto},
STEP 3 formulation of optimization task related to (8),

STEP 4 representation of a solution in an appropriate basis,
STEP 5 optimal composition of modal currents,
 1st method: combination of 2 modes\(^5\),
 2nd method: composition of n modes\(^6\),
 3rd method: solution with 1 mode\(^7\).

Source Concept Based Definition – Operators

STEP 1

► assume operators in their matrix forms, i.e., $Z \rightarrow Z$,
► assume functions in their vector forms, i.e., $J \rightarrow I$,

\[
Z = R + jX = R + j(X_m - X_e), \quad J \approx \sum_n I_n \psi_n,
\]

therefore, we get

\[
P_r = \frac{1}{2} I^H R I, \quad 2\omega (W_m - W_e) = \frac{1}{2} I^H (X_m - X_e) I
\]

(9) (10)
Source Concept Based Definition – Operators

STEP 1
- assume operators in their matrix forms, \(\mathcal{Z} \rightarrow \mathcal{Z} \),
- assume functions in their vector forms, \(\mathcal{J} \rightarrow \mathbf{I} \),

\[\mathcal{Z} = \mathbf{R} + j\mathbf{X} = \mathbf{R} + j(\mathcal{X}_m - \mathcal{X}_e), \quad \mathcal{J} \approx \sum_n I_n \psi_n, \quad (9) \]

therefore, we get

\[P_r = \frac{1}{2} \mathbf{I}^H \mathbf{R} \mathbf{I}, \quad 2\omega (W_m - W_e) = \frac{1}{2} \mathbf{I}^H (\mathcal{X}_m - \mathcal{X}_e) \mathbf{I} \quad (10) \]

STEP 2A
- definition of quality factor \(Q \)

\[Q(\mathbf{I}) = \frac{2\omega \max\{W_m, W_e\}}{P_r} = \frac{\omega (W_m + W_e)}{P_r} + \frac{\omega |W_m - W_e|}{P_r} \quad (11) \]
STEP 2B

- frankly speaking we still do not have complete idea what the stored energy is

\[
W_m + W_e = W_{stot} \approx \frac{1}{4} \left\langle J, \partial \text{Im} \{Z\} \partial \omega \right\rangle \approx \frac{1}{4} I_H \partial X \partial \omega = \frac{1}{4} I_H X' I(12)
\]

STEP 3

- find \(I_{opt} \) so that

\[
\text{minimize quality factor } Q(I)
\]

subject to

\[
W_m(I) - W_e(I) = 0
\]

(14)
Stored Energy Operator and Its Minimization

STEP 2B

- frankly speaking we still do not have complete idea what the stored energy is
 - but… we have many papers attempting to define it\(^8\)
 - one of the best possibilities for small radiators, \(ka < 1\), is\(^9\):

\[
W_m + W_e = W_{\text{sto}} \approx \frac{1}{4} \left< J, \frac{\partial \text{Im} \{Z\}}{\partial \omega} J \right> \approx \frac{1}{4} I^H \frac{\partial X}{\partial \omega} I = \frac{1}{4} I^H X'I = \frac{1}{4\omega} I^H (X_m + X_e) I
\]

\((12)\)

Minimum Quality Factor Q

Stored Energy Operator and Its Minimization

STEP 2B

- frankly speaking we still do not have complete idea what the stored energy is
 - but... we have many papers attempting to define it\(^8\)
 - one of the best possibilities for small radiators, $ka < 1$, is\(^9\):

$$W_m + W_e = W_{sto} \approx \frac{1}{4} \left\langle J, \frac{\partial \text{Im} \{Z\}}{\partial \omega} J \right\rangle \approx \frac{1}{4} \mathbf{I}^H \frac{\partial \mathbf{X}}{\partial \omega} \mathbf{I} = \frac{1}{4} \mathbf{I}^H \mathbf{X}' \mathbf{I} = \frac{1}{4\omega} \mathbf{I}^H (\mathbf{X}_m + \mathbf{X}_e) \mathbf{I}$$ \hspace{1cm} (12)

STEP 3

- find \mathbf{I}_{opt} so that

$$\text{minimize quality factor } Q(\mathbf{I}),$$

subject to

$$W_m(\mathbf{I}) - W_e(\mathbf{I}) = 0.$$ \hspace{1cm} (14)

Modal Approach: Combining Two Proper Modes

STEP 4

- let us decompose the current into (yet unknown) modes such that

\[I = \sum_{n=1}^{N} \alpha_n I_n \] \hfill (15)

then, substituting (10), (12), and (15) into (11), the quality factor \(Q \) reads

\[Q(I) = \frac{\omega V \sum_{v=1}^{V} U \sum_{u=1}^{U} \alpha^* u \alpha v I_H u X' I_v}{\sqrt{\left(\sum_{v=1}^{V} U \sum_{u=1}^{U} \alpha^* u \alpha v I_H u X I_v \right)^2}} \] \hfill (16)

analytical solution can easily be found as a combination of two modes iff

\[I_H u R I_v = \delta_{uv}, \quad I_H u X I_v = \Lambda_{uv} \delta_{uv}, \quad \omega I_H u X' I_v = \chi_{uv} \delta_{uv}. \] \hfill (17)
Modal Approach: Combining Two Proper Modes

STEP 4

- let us decompose the current into (yet unknown) modes such that

$$I = \sum_{n=1}^{N} \alpha_n I_n$$ \hspace{1cm} (15)

- then, substituting (10), (12), and (15) into (11), the quality factor Q reads

$$Q(I) = \frac{\omega \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha_u^* \alpha_v I_u^H X I_v + \left| \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha_u^* \alpha_v I_u^H X I_v \right|}{2 \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha_u^* \alpha_v I_u^H R I_v}.$$ \hspace{1cm} (16)
Modal Approach: Combining Two Proper Modes

STEP 4

▸ let us decompose the current into (yet unknown) modes such that

\[I = \sum_{n=1}^{N} \alpha_n I_n \] \hspace{1cm} (15)

▸ then, substituting (10), (12), and (15) into (11), the quality factor \(Q \) reads

\[Q(I) = \frac{\omega \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha^*_u \alpha_v I_u^H X'I_v + \left| \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha^*_u \alpha_v I_u^H X I_v \right|}{2 \sum_{v=1}^{V} \sum_{u=1}^{U} \alpha^*_u \alpha_v I_u^H R I_v} \] \hspace{1cm} (16)

▸ analytical solution can easily be found as a combination of two modes iff

\[I_u^H R I_v = \delta_{uv}, \quad I_u^H X I_v = \Lambda_{uv} \delta_{uv}, \quad \omega I_u^H X' I_v = \chi_{uv} \delta_{uv}. \] \hspace{1cm} (17)
Why to Combine Two Modes?

Tuning by external lumped element (localized current).
Why to Combine Two Modes?

Tuning by external lumped element (localized current).

Tuning by distributive current.

Capek, M., CTU in Prague

Current Optimization for Electrically Small Antennas
How to Combine Two Modes?

Normalizing $\alpha_1 = 1$ and selecting proper mode(s), we get\(^{10}\)

$$Q(I_{\text{opt}}) = \frac{\omega \left(I_1^H X' I_1 + |\alpha_{\text{opt}}|^2 I_2^H X' I_2 \right)}{2 \left(1 + |\alpha_{\text{opt}}|^2 \right)}.$$ \hspace{1cm} (18)

How to Combine Two Modes?

Normalizing $\alpha_1 = 1$ and selecting proper mode(s), we get\(^\text{10}\)

$$Q (I_{\text{opt}}) = \frac{\omega \left(I_1^H X_1' I_1 + |\alpha_{\text{opt}}|^2 I_2^H X_2' I_2 \right)}{2 \left(1 + |\alpha_{\text{opt}}|^2 \right)}.$$ (18)

STEP 5

To diagonalize at least two of R, X, and X' matrices we can choose:

$$XI_u = \lambda_u R I_u,$$ (19)

$$\frac{\omega}{2} X' I_u = q_u R I_u,$$ (20)

$$XI_u = \xi_u \frac{\omega}{2} X' I_u.$$ (21)

Modal Approach

How to Combine Two Modes?

Normalizing $\alpha_1 = 1$ and selecting proper mode(s), we get

$$Q(I_{opt}) = \frac{\omega \left(I_1^H X' I_1 + |\alpha_{opt}|^2 I_2^H X' I_2 \right)}{2 \left(1 + |\alpha_{opt}|^2 \right)}.$$ \hspace{1cm} (18)

STEP 5

To diagonalize at least two of R, X, and X' matrices we can choose:

$$XI_u = \lambda_u RI_u,$$ \hspace{1cm} (19)

$$\frac{\omega}{2} X' I_u = q_u RI_u,$$ \hspace{1cm} (20)

$$XI_u = \xi_u \frac{\omega}{2} X' I_u.$$ \hspace{1cm} (21)

Example: Optimal Current For Minimal Quality Factor Q

Take the pen and try to draw a current possessing minimum quality factor Q...

PEC plate $L \times L/2$, $ka = 0.5$.
Example: Optimal Current For Minimal Quality Factor Q

...here is the correct answer.

Optimal current with respect to minimum quality factor Q.
Modal Approach

Modal Composition of the Optimal Current

Dominant (dipole-like) characteristic mode $J_1, \alpha_1 = 1$.

First inductive (loop-like) mode $J_2, \alpha_2 = 0.4553$.
Modal Approach

Modal Composition of the Optimal Current

- Dominant (dipole-like) characteristic mode \(J_1, \alpha_1 = 1 \).
- First inductive (loop-like) mode \(J_2, \alpha_2 = 0.4553 \).

- Characteristic modes (19) are quite convenient to define and interpret optimal currents\(^\text{11}\), e.g., for \(ka < 1 \) we have \(Q(J_{\text{opt}}) \approx Q(J_1 + \alpha_2 J_2) \)
- However, for higher \(ka \) or for highly irregular shapes, the energy cross-terms occur, i.e., \(\omega I_u^H X^I_I \neq 0 \)

Convexity of Two-Mode Combination

Quality factor Q as a combination of two modes for $L \times L/2$ PEC plate, $Q_U(I) = \omega I^H X' I / 2 I^H R I$, $I = I_1 + \alpha_2 I_2$.

$k a = 0.5$

$I_{C1} + \alpha_2 I_{I1}$

$I_{C2} + \alpha_2 I_{I1}$

$I_{C1} + \alpha_2 I_{C2}$

$I_{C1} + \alpha_2 I_{I2}$

I_{C2}

I_{I1}

I_{I1}

I_{I2}

$I_{C1} + \alpha_2 I_{I2}$

α_{opt}

$Q_U(I)$

$Q(I)$

40

54.73

24.42

35.60

43.89

3.5 0.5 0.0 5 1

80

I_{C1}

I_{C2}

I_{I1}

I_{I2}

$I_{C1} + \alpha_2 I_{I1}$

$I_{C2} + \alpha_2 I_{I1}$

$I_{C1} + \alpha_2 I_{C2}$

$I_{C1} + \alpha_2 I_{I2}$

α_{opt}

$Q_U(I)$

$Q(I)$

40

54.73

24.42

35.60

43.89

$k a = 0.5$

Quality factor Q as a combination of two modes for $L \times L/2$ PEC plate, $Q_U(I) = \omega I^H X' I / 2 I^H R I$, $I = I_1 + \alpha_2 I_2$.

$k a = 0.5$

$I_{C1} + \alpha_2 I_{I1}$

$I_{C2} + \alpha_2 I_{I1}$

$I_{C1} + \alpha_2 I_{C2}$

$I_{C1} + \alpha_2 I_{I2}$

α_{opt}

$Q_U(I)$

$Q(I)$

40

54.73

24.42

35.60

43.89

$k a = 0.5$

Quality factor Q as a combination of two modes for $L \times L/2$ PEC plate, $Q_U(I) = \omega I^H X' I / 2 I^H R I$, $I = I_1 + \alpha_2 I_2$.

$k a = 0.5$
Convexity of Two-Mode Combination

Quality factor Q as a combination of two modes for $L \times L/2$ PEC plate, $Q_U(I) = \omega \mathbf{I}^H \mathbf{X}' \mathbf{I} / 2 \mathbf{I}^H \mathbf{R} \mathbf{I}$, $\mathbf{I} = \mathbf{I}_1 + \alpha_2 \mathbf{I}_2$.

- extremely straightforward analytical solution for spherical shell12
- sub-optimality for G/Q ratio
- alternative bases can be used to reduce the effect of cross-terms
- intuitive, however, non-convex and only approximative procedure (non-zero cross-terms)

Combining More Modes

Lessons Learned

- More modes than two are needed for a given set of operators.
- Particular approach to quality factor Q needs to be generalized.
Lessons Learned

- More modes than two are needed for a given set of operators.
- Particular approach to quality factor Q needs to be generalized.

For now, let us start with the following general optimization problem13:

$$\min_{\mathbf{I}} \{ \mathbf{I}^H \mathbf{A} \mathbf{I} \},$$

$$\mathbf{I}^H \mathbf{B} \mathbf{I} = 1,$$

$$\mathbf{I}^H \mathbf{C} \mathbf{I} = \gamma.$$

- any problem expressible in bilinear form can be solved,
- matrices \mathbf{A}, \mathbf{B} and \mathbf{C} cannot be generally diagonalized simultaneously.

represent our solution in a basis \((\text{same as before}) \)

\[I = \sum_{n=1}^{N} \alpha_n I_n \] \hspace{1cm} (25)
represent our solution in a basis (same as before)

\[I = \sum_{n=1}^{N} \alpha_n I_n \]

so that the modal currents fulfill (before: \(S \equiv X/2, \ T \equiv R/2 \))

\[SI_n = \zeta_n TI, \quad I_m^H (T + jS) I_n = (1 + j\zeta_n) \delta_{mn} \]

with \(T = T^H, \ S = S^H \) and \(\zeta_n \in \mathbb{R} \)
Optimal Composition of Modes

Optimization Problem to Be Solved

- represent our solution in a basis (same as before)
 \begin{equation}
 \mathbf{I} = \sum_{n=1}^{N} \alpha_n \mathbf{I}_n \tag{25}
 \end{equation}

- so that the modal currents fulfill (before: \(S \equiv \mathbf{X}/2, \mathbf{T} \equiv \mathbf{R}/2 \))
 \begin{align*}
 \mathbf{S}\mathbf{I}_n &= \zeta_n \mathbf{T}\mathbf{I}_n, \\
 \mathbf{I}_m^H (\mathbf{T} + j\mathbf{S}) \mathbf{I}_n &= (1 + j\zeta_n) \delta_{mn} \tag{26}
 \end{align*}

with \(\mathbf{T} = \mathbf{T}^H, \mathbf{S} = \mathbf{S}^H \) and \(\zeta_n \in \mathbb{R} \)

- finally, represent operators \(\mathbf{A}, \mathbf{B} \) and \(\mathbf{C} \) in basis (25) as
 \begin{align*}
 \mathbf{A}_{\text{GEP}}^{mn} &= \langle \mathbf{I}_m, \mathbf{A}\mathbf{I}_n \rangle = \mathbf{I}_m^H \mathbf{A}\mathbf{I}_n, \\
 \mathbf{A}^{\text{GEP}} &= \begin{bmatrix} \mathbf{A}_{\text{GEP}}^{mn} \end{bmatrix} \tag{27}
 \end{align*}

and same for \(\mathbf{B} \rightarrow \mathbf{B}^{\text{GEP}} \) and \(\mathbf{C} \rightarrow \mathbf{C}^{\text{GEP}} \)
Problem (22)–(24) is transformed to

\[\min_{\alpha} \{ \alpha^H A^{\text{GEP}} \alpha \}, \quad (28) \]

\[\alpha^H B^{\text{GEP}} \alpha = 1, \quad (29) \]

\[\alpha^H C^{\text{GEP}} \alpha = \gamma, \quad (30) \]

\footnote{Be careful here with \(\lambda_1, \lambda_2 \): here, they present the Lagrange multipliers not the characteristic numbers as in the previous method.}
Optimization Procedure

Problem (22)–(24) is transformed to and solved using Lagrange multipliers

$$\min_\alpha \{ \alpha^H A^{\text{GEP}} \alpha \}, \quad (28) \quad A^{\text{GEP}} \alpha = \lambda_1 C^{\text{GEP}} \alpha + \lambda_2 B^{\text{GEP}} \alpha. \quad (31)$$

$$\alpha^H B^{\text{GEP}} \alpha = 1, \quad (29)$$

$$\alpha^H C^{\text{GEP}} \alpha = \gamma, \quad (30)$$

14 Be careful here with λ_1, λ_2: here, they present the Lagrange multipliers not the characteristic numbers as in the previous method.

Optimization Procedure

Problem (22)–(24) is transformed to

\[
\min_{\alpha} \{ \alpha^H A^{\text{GEP}} \alpha \}, \quad (28)
\]

and solved using Lagrange multipliers

\[
A^{\text{GEP}} \alpha = \lambda_1 C^{\text{GEP}} \alpha + \lambda_2 B^{\text{GEP}} \alpha. \quad (31)
\]

\[
\alpha^H B^{\text{GEP}} \alpha = 1, \quad (29)
\]

\[
\alpha^H C^{\text{GEP}} \alpha = \gamma, \quad (30)
\]

Procedure proceed in following steps:

1. Choose \(\lambda_2 \) and solve (31).
2. Normalize all solutions to satisfy (29).
3. Check the constraint (30).
4. Vary \(\lambda_2 \) and find solution to (30).
5. From candidates satisfying (29)–(31) select the one fulfilling (28).

14 Be careful here with \(\lambda_1, \lambda_2 \): here, they present the Lagrange multipliers not the characteristic numbers as in the previous method.

Minimum Quality Factor Q and Lagrange Multipliers

<table>
<thead>
<tr>
<th>Problem to be solved</th>
<th>Representation</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \omega X'/4$, (32)</td>
<td>$S = X/2$, (35)</td>
<td>$\gamma = 0$, (37)</td>
</tr>
<tr>
<td>$B = R/2$, (33)</td>
<td>$T = R/2$, (36)</td>
<td>$B^{\text{GEP}} = I$, (38)</td>
</tr>
<tr>
<td>$C = X/2$, (34)</td>
<td></td>
<td>$\lambda_2 = \alpha^H A^{\text{GEP}} \alpha = Q$, (39)</td>
</tr>
</tbody>
</table>

\[
A^{\text{GEP}} \alpha = \lambda_1 C^{\text{GEP}} \alpha + \lambda_2 B^{\text{GEP}} \alpha
\]

\[
\alpha^H A^{\text{GEP}} \alpha = \lambda_1 \alpha^H C^{\text{GEP}} \alpha + \lambda_2 \alpha^H B^{\text{GEP}} \alpha
\]
Minimum Quality Factor Q and Lagrange Multipliers

Problem to be solved

<table>
<thead>
<tr>
<th>Representation</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \omega X'/4$, (32)</td>
<td>$S = X/2$, (35)</td>
</tr>
<tr>
<td>$B = R/2$, (33)</td>
<td>$T = R/2$, (36)</td>
</tr>
<tr>
<td>$C = X/2$, (34)</td>
<td></td>
</tr>
</tbody>
</table>

Observations:

- $\gamma = 0$ is the resonant condition,
- With $\gamma = 0$ the multiplier λ_2 is directly equal to the optimized quantity.

$$A^{\text{GEP}} \alpha = \lambda_1 C^{\text{GEP}} \alpha + \lambda_2 B^{\text{GEP}} \alpha$$

$$\alpha^H A^{\text{GEP}} \alpha = \lambda_1 \alpha^H C^{\text{GEP}} \alpha + \lambda_2 \alpha^H B^{\text{GEP}} \alpha$$
Optimal Composition of Modes

Procedure and Its Results

Optimization done as $\lambda_2(\lambda_1) = Q$.

$\lambda_2 = Q$
$ka = 0.5$

1. vary λ_1, find λ_2, i.e., tuning for minimum quality factor Q

2. vary λ_2, find λ_1, i.e., sweeping $\lambda_2 = Q$ for proper tuning

Capek, M., CTU in Prague

Current Optimization for Electrically Small Antennas
Procedure and Its Results

- procedure converges well to the correct result
- two options how to solve the problem
 1. vary λ_1, find λ_2, i.e., tuning for minimum quality factor Q
 2. vary λ_2, find λ_1, i.e., sweeping $\lambda_2 = Q$ for proper tuning

Optimization done as $\lambda_2 (\lambda_1) = Q$.
Lessons Learned

▶ Lagrange multipliers constitute powerful method.
▶ It is, however, both theoretically and practically quite complicated.
▶ Is there any basis in which $I_{opt} = I_1$?
What Is the Best Basis Possible?

Lessons Learned

▶ Lagrange multipliers constitute powerful method.
▶ It is, however, both theoretically and practically quite complicated.
▶ Is there any basis in which \(I_{\text{opt}} = I_1 \)?

Procedure not relying on optimal composition of modes exists\(^{16}\)

\[
(1 - \nu) X_m + \nu X_e \, I_n = \tilde{Q}_\nu RI_n, \tag{40}
\]

constituting a dual problem which can be easily solved (since its convex nature):

\[
\min_{\{Q\}} = \max_\nu \left\{ \tilde{Q}_\nu \right\}. \tag{41}
\]

Lessons Learned

- Lagrange multipliers constitute powerful method.
- It is, however, both theoretically and practically quite complicated.
- Is there any basis in which $I_{opt} = I_1$?

Procedure not relying on optimal composition of modes exists\(^{16}\)

\[
((1 - \nu) X_m + \nu X_e) I_n = \tilde{Q}_\nu R I_n,
\]

constituting a dual problem which can be easily solved (since its convex nature):

\[
\min_I \{Q\} = \max_\nu \{\tilde{Q}_\nu\}.
\]

- based only on convex combination of X_m and X_e operators
- needs positive-definite operator in RHS of (40)

\(^{16}\text{M. Gustafsson, D. Tayli, C. Ehrenborg, et al., “Antenna current optimization using MATLAB and CVX”, , } FERMAT,\text{ vol. 15, no. 5, pp. 1–29, 2016}
Does It Work?

Originally concluded\(^{17}\) that a non-zero dual gap exists . . .

Does It Work?

Originally concluded17 that a non-zero dual gap exists…

\[Q_{m/e} = \frac{I^H_x x_{m/e} I^H}{I^H_R I_L} \]

\[kL \approx 0.628 \]

\[Q_{m/e} = \frac{I^H_x x_{m/e} I^H}{I^H_R I_L} \]

\[L/2 \]

\[L/4 \]

\[L \]

\[L/2 \]

\[\nu = 0.75 \]

\[\nu = 0.95 \]

\[\nu \]

\[kL \approx 0.628 \]

\[\min \{Q\} \]

\[\max \{Q_{m/v}, Q_{e/v}\} \]

\[\tilde{Q}_v \]

\[\tilde{Q}_v \]

\[\max \{Q_{m/v}, Q_{e/v}\} \]

\[\min \{Q\} \]

\[\nu \]

\[kL \approx 0.628 \]

\[\tilde{Q}_v \]

\[\tilde{Q}_v \]

\[\max \{Q_{m/v}, Q_{e/v}\} \]

\[\min \{Q\} \]

\[\nu \]

\[kL \approx 0.628 \]

\[\nu \]

\[kL \approx 0.628 \]

\[\nu \]

…or not18?

Does It Work?

Originally concluded17 that a non-zero dual gap exists…

\begin{itemize}
 \item Do you have any idea where is the problem?
\end{itemize}

17M. Gustafsson, D. Tayli, C. Ehrenborg, \textit{et al.}, “Antenna current optimization using MATLAB and CVX”, \textit{FERMAT}, vol. 15, no. 5, pp. 1–29, 2016

Degenerated Eigenspace: Let’s Make It Work . . .

- if dual gap exists then only because of internal symmetries and existence of degenerated eigenspace\(^\text{19}\)
 - the internal symmetries must be preserved by the used discretization scheme (e.g., rectangular plate is discretized with rooftop basis functions)

Degenerated Eigenspace: Let’s Make It Work...

- if dual gap exists then only because of internal symmetries and existence of degenerated eigenspace\(^{19}\)
 - the internal symmetries must be preserved by the used discretization scheme (e.g., rectangular plate is discretized with rooftop basis functions)

- it can be shown the that dual gap can always be done zero
 - for two degenerated solutions \(\mathbf{I}_1\) and \(\mathbf{I}_2\) find \(c_2 \in \mathbb{C}\) such that\(^{20}\)

\[
\mathbf{I}_\nu^H (\mathbf{X}_m - \mathbf{X}_e) \mathbf{I}_\nu = 0, \quad \mathbf{I}_\nu = \mathbf{I}_1 + c_2 \mathbf{I}_2,
\]

\(^{20}\) Notice that \(\mathbf{I}_1\) and \(\mathbf{I}_2\) in (42) are different from those in (18).

\(^{19}\) Notice that \(\mathbf{I}_1\) and \(\mathbf{I}_2\) in (42) are different from those in (18).
What Can Be Solved Now?

<table>
<thead>
<tr>
<th>RHS of (40)</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiated power</td>
<td>R</td>
</tr>
<tr>
<td>Mode expansion</td>
<td>$\frac{1}{Z_0} \sum_\tau F^H \tau F_{\tau}$</td>
</tr>
<tr>
<td>Radiation intensity</td>
<td>$U(\hat{r}, \hat{e}) = \frac{1}{Z_0} F^H (\hat{r}, \hat{e}) F (\hat{r}, \hat{e})$</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>$4\pi \left(U(\hat{r}, \hat{\theta}) + U(\hat{r}, \hat{\phi}) \right)$</td>
</tr>
<tr>
<td>Ohmic losses</td>
<td>R_σ</td>
</tr>
<tr>
<td>Field intensity</td>
<td>$N^H_{e/m} N_{e/m}$</td>
</tr>
</tbody>
</table>

As far as the operator on the RHS of (40) is positive definite the procedure works well.
Recall the method of Lagrange multipliers from (22)–(24) as

\[AI = \lambda_1 CI + \lambda_2 BI. \]

(43)
Recall the method of Lagrange multipliers from (22)–(24) as

\[\text{AI} = \lambda_1 \text{CI} + \lambda_2 \text{BI}. \]
(43)

Minimization of quality factor \(Q \) (proportional to \(\lambda_2 \)) reads

\[\frac{\omega}{4} \mathbf{X}' \mathbf{I} = \frac{\lambda_1}{2} \mathbf{XI} + \frac{\lambda_2}{2} \mathbf{RI}. \]
(44)

Substituting \(\mathbf{X}' = (\mathbf{X}_m + \mathbf{X}_e) / \omega \) from (12) and \(\mathbf{X} = \mathbf{X}_m - \mathbf{X}_e \) from (9) yields

\[\frac{1}{4} (\mathbf{X}_m + \mathbf{X}_e) \mathbf{I} = \frac{\lambda_1}{2} (\mathbf{X}_m - \mathbf{X}_e) \mathbf{I} + \frac{\lambda_2}{2} \mathbf{RI}, \]
(45)

\[(\frac{1}{2} - \lambda_1) \mathbf{X}_m + (\frac{1}{2} + \lambda_1) \mathbf{X}_e \mathbf{I} = \lambda_2 \mathbf{RI}, \]
(46)

Substituting \(\nu = \frac{1}{2} + \lambda_1 \) finally creates the link between two presented methods

\[(1 - \nu) \mathbf{X}_m + \nu \mathbf{X}_e \mathbf{I} = \lambda_2 \mathbf{RI}. \]
(47)
Recall the method of Lagrange multipliers from (22)–(24) as
\[AI = \lambda_1 CI + \lambda_2 BI. \] (43)

Minimization of quality factor \(Q \) (proportional to \(\lambda_2 \)) reads
\[\frac{\omega}{4} X'I = \frac{\lambda_1}{2} XI + \frac{\lambda_2}{2} RI. \] (44)

Substituting \(X' = (X_m + X_e)/\omega \) from (12) and \(X = X_m - X_e \) from (9) yields
\[\frac{1}{4} (X_m + X_e) I = \frac{\lambda_1}{2} (X_m - X_e) I + \frac{\lambda_2}{2} RI, \] (45)
\[\left(\left(\frac{1}{2} - \lambda_1 \right) X_m + \left(\frac{1}{2} + \lambda_1 \right) X_e \right) I = \lambda_2 RI, \] (46)
Recall the method of Lagrange multipliers from (22)–(24) as

\[AI = \lambda_1 CI + \lambda_2 BI. \] (43)

Minimization of quality factor \(Q \) (proportional to \(\lambda_2 \)) reads

\[\frac{\omega}{4} X'I = \frac{\lambda_1}{2} XI + \frac{\lambda_2}{2} RI. \] (44)

Substituting \(X' = (X_m + X_e) / \omega \) from (12) and \(X = X_m - X_e \) from (9) yields

\[\frac{1}{4} (X_m + X_e) I = \frac{\lambda_1}{2} (X_m - X_e) I + \frac{\lambda_2}{2} RI, \] (45)

\[\left(\left(\frac{1}{2} - \lambda_1 \right) X_m + \left(\frac{1}{2} + \lambda_1 \right) X_e \right) I = \lambda_2 RI, \] (46)

Substituting \(\nu = 1/2 + \lambda_1 \) finally creates the link between two presented methods

\[((1 - \nu) X_m + \nu X_e) I = \lambda_2 RI. \] (47)
Summary

Part 1 – Minimization of quality factor Q

Representation of continuous int.-dif. operators:

1. make the problem algebraic
 - our choice: piecewise basis functions $\{\psi_n\}$ with $\langle \psi_m, L(\psi_n) \rangle$

2. make the problem feasible
 - our choice: entire domain basis functions $\{I_n\}$ with $\langle I_m, L(I_n) \rangle$

Quality factor Q without external tuning

1st method we saw that the self-resonant current is optimal

2nd method the resonant (or other) constraint can easily be set

3rd method yields the self-resonant current automatically
Summary
Part 1 – Minimization of quality factor Q

Representation of continuous int.-dif. operators:
1. make the problem algebraic
 - our choice: piecewise basis functions $\{ \psi_n \}$ with $\langle \psi_m, L(\psi_n) \rangle$
2. make the problem feasible
 - our choice: entire domain basis functions $\{ I_n \}$ with $\langle I_m, L(I_n) \rangle$

Quality factor Q without external tuning
1st method we saw that the self-resonant current is optimal
2nd method the resonant (or other) constraint can easily be set
3rd method yields the self-resonant current automatically
Summary and Concluding Remarks

Part 2 – Optimal currents

determination of the optimal currents is well-established
more challenging problems can be now studied
all concepts are still half-way to their applicability (feeding)
Summary and Concluding Remarks

Summary
Part 2 – Optimal currents

- determination of the optimal currents is well-established
- more challenging problems can be now studied
- all concepts are still half-way to their applicability (feeding)

Future work
- arrays/scatterers
- excitation placement, number of feeders
- shape modifications
Today’s presentation will be followed by the second part:

- **Capek, M.:** Implementation of Source Concept in Matlab, (Jan. 19 **Thu 11 AM**).

You will learn about

- implementation of the Source Concept,
- (problematic) feeding of optimal currents,
- Matlab (proc and cons),
- new features in Matlab,
- developing big project in Matlab (how to stay sane).
Questions?

For complete PDF presentation see capek.elmag.org

Miloslav Čapek
miloslav.capek@fel.cvut.cz

17. 1. 2017, v1.01