Characteristic numbers
Characteristic numbers of spherical shell of radius a made of PEC are:
$$lambda_n^mathrm{TE} = – frac{mathrm{y}_n left(ka right)}{mathrm{j}_n left( ka right)},$$
$$lambda_n^mathrm{TM} = – frac{left( n + 1 right) mathrm{y}_n left(ka right) – ka , mathrm{y}_{n+1} left(ka right)}{ left( n + 1 right) mathrm{j}_n left( ka right) – ka , mathrm{j}_{n+1} left( ka right)},$$
where $mathrm{j}_p$ and $mathrm{y}_p$ are the spherical Bessel (Neumann) functions of $p$-th order.
Characteristic angles (only re-scaling of characteristic numbers):
$$delta_n^mathrm{TE/TM} =180 left( 1 – frac{1}{pi} mathrm{atan} left( lambda_n^mathrm{TE/TM} right) right).$$
Characteristic numbers calculated as $10 , text{log}_{10} left|lambda_nright|$ for three different normalized frequencies ka:
Characteristic currents
Characteristic currents (normalized with respect to unitary radiated power) are:
$$boldsymbol{J}_{pq}^mathrm{TE} = C_{pq} left( ka right) hat{boldsymbol{r}} times boldsymbol{N}_{pq} left(mathrm{j}_p,a,vartheta,varphiright),$$
$$boldsymbol{J}_{pq}^mathrm{TM} = C_{pq} left( ka right) hat{boldsymbol{r}} times boldsymbol{M}_{pq} left(mathrm{j}_p,a,vartheta,varphiright),$$
where
$$C_{pq} left( ka right) = frac{k}{gamma_p left( ka right)} displaystylesqrt{frac{Z_0 left(2p+1right)left(p-qright)!}{pi left( 1 + delta_{q0} right) p left(p+1right)left(p+qright)!}},$$
$$gamma_p left( ka right) = Z_0 ka , mathrm{j}_p left( ka right) frac{partial left( ka , mathrm{j}_p left( ka right) right)}{partial ka},$$
$Z_0 = sqrt{mu / epsilon}$ being impedance of vacuum, functions $boldsymbol{M}_{pq}$ and $boldsymbol{N}_{pq}$ being defined in Stratton.
The aggregated index $boldsymbol{J}_n = left{ boldsymbol{J}_{pq}^mathrm{TE}, boldsymbol{J}_{pq}^mathrm{TM} right}$ is used thoroughly on this web page.
Characteristic numbers $lambda_n$, first six TM and TE modes:
Characteristic angles $delta_n$, first six TM and TE modes:
/Edited 17. 07. 2017, MC/